Calculate quasi-likelihood and ML estimator of least squares estimator
Calculate quasi-likelihood and ML estimator of least squares estimator
Calculate the quasi-likelihood and estimate of the parameters of the stochastic differential equation by the maximum likelihood method or least squares estimator of the drift parameter.
UTF-8
print: you can see a progress of the estimation when print is TRUE.
envir: an environment where the model coefficients are evaluated.
method: see Details.
param: list of parameters for the quasi loglikelihood.
lower: a named list for specifying lower bounds of parameters
upper: a named list for specifying upper bounds of parameters
start: initial values to be passed to the optimizer.
fixed: for conditional (quasi)maximum likelihood estimation.
joint: perform joint estimation or two stage estimation? by default joint=FALSE.
Est.Incr: If the yuima model is an object of yuima.carma-class or yuima.cogarch-class the qmle returns an object of yuima.carma.qmle-class, cogarch.est.incr-class,cogarch.est-class or object of class mle-class. By default Est.Incr="NoIncr", alternative values are IncrPar and Incr.
aggregation: If aggregation=TRUE, before the estimation of the levy parameters we aggregate the increments.
threshold: If the model has Compund Poisson type jumps, the threshold is used to perform thresholding of the increments.
...: passed to optim method. See Examples.
rcpp: use C++ code?
Details
qmle behaves more likely the standard mle function in stats4 and argument method is one of the methods available in optim.
lse calculates least squares estimators of the drift parameters. This is useful for initial guess of qmle estimation. quasilogl returns the value of the quasi loglikelihood for a given yuima object and list of parameters coef.
Returns
QL: a real value.
opt: a list with components the same as 'optim' function.
carmaopt: if the model is an object of yuima.carma-class, qmle returns an object yuima.carma.qmle-class
cogarchopt: if the model is an object of yuima.cogarch-class, qmle returns an object of class cogarch.est-class. The estimates are obtained by maximizing the pseudo-loglikelihood function as shown in Iacus et al. (2015)
References
Non-ergodic diffucion
Genon-Catalot, V., & Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. In Annales de l'IHP et statistiques, 29(1), 119-151.
Uchida, M., & Yoshida, N. (2013). Quasi likelihood analysis of volatility and nondegeneracy of statistical random field. Stochastic Processes and their Applications, 123(7), 2851-2876.
Ergodic diffusion
Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics, 24(2), 211-229.
Jump diffusion
Shimizu, Y., & Yoshida, N. (2006). Estimation of parameters for diffusion processes with jumps from discrete observations. Statistical Inference for Stochastic Processes, 9(3), 227-277.
Ogihara, T., & Yoshida, N. (2011). Quasi-likelihood analysis for the stochastic differential equation with jumps. Statistical Inference for Stochastic Processes, 14(3), 189-229.
COGARCH
Iacus S. M., Mercuri L. and Rroji E.(2015) Discrete time approximation of a COGARCH (p, q) model and its estimation. tools:::Rd_expr_doi("10.48550/arXiv.1511.00253")
CARMA
Iacus S. M., Mercuri L. (2015) Implementation of Levy CARMA model in Yuima package. Comp. Stat. (30) 1111-1141. tools:::Rd_expr_doi("10.1007/s00180-015-0569-7")
Author(s)
The YUIMA Project Team
Note
The function qmle uses the function optim internally.
The function qmle uses the function CarmaNoise internally for estimation of underlying Levy if the model is an object of yuima.carma-class.