Basic constructor for Compound Poisson processes
'setPoisson' construct a Compound Poisson model specification for a process of the form:
Mt = m0+sum_{i=0}^Nt c*Y_{tau_i}, M0=m0
where Nt is a homogeneous or time-inhomogeneous Poisson process, tau_i is the sequence of random times of Nt and Y is a sequence of i.i.d. random jumps.
setPoisson(intensity = 1, df = NULL, scale = 1, dimension=1, ...)
intensity
: either and expression or a numerical value representing the intensity function of the Poisson process Nt.df
: is the density of jump random variables Y.scale
: this is the scaling factor c
.dimension
: this is the dimension of the jump component....
: passed to setModel
An object of yuima.model-class
where the model
slot is of class yuima.poisson-class
.
yuima.model-class
.The YUIMA Project Team
## Not run: Terminal <- 10 samp <- setSampling(T=Terminal,n=1000) # Ex 1. (Simple homogeneous Poisson process) mod1 <- setPoisson(intensity="lambda", df=list("dconst(z,1)")) set.seed(123) y1 <- simulate(mod1, true.par=list(lambda=1),sampling=samp) plot(y1) # scaling the jumps mod2 <- setPoisson(intensity="lambda", df=list("dconst(z,1)"),scale=5) set.seed(123) y2 <- simulate(mod2, true.par=list(lambda=1),sampling=samp) plot(y2) # scaling the jumps through the constant distribution mod3 <- setPoisson(intensity="lambda", df=list("dconst(z,5)")) set.seed(123) y3 <- simulate(mod3, true.par=list(lambda=1),sampling=samp) plot(y3) # Ex 2. (Time inhomogeneous Poisson process) mod4 <- setPoisson(intensity="beta*(1+sin(lambda*t))", df=list("dconst(z,1)")) set.seed(123) lambda <- 3 beta <- 5 y4 <- simulate(mod4, true.par=list(lambda=lambda,beta=beta),sampling=samp) par(mfrow=c(2,1)) par(mar=c(3,3,1,1)) plot(y4) f <- function(t) beta*(1+sin(lambda*t)) curve(f, 0, Terminal, col="red") # Ex 2. (Time inhomogeneous Compound Poisson process with Gaussian Jumps) mod5 <- setPoisson(intensity="beta*(1+sin(lambda*t))", df=list("dnorm(z,mu,sigma)")) set.seed(123) y5 <- simulate(mod5, true.par=list(lambda=lambda,beta=beta,mu=0, sigma=2),sampling=samp) plot(y5) f <- function(t) beta*(1+sin(lambda*t)) curve(f, 0, Terminal, col="red") ## End(Not run)