object: an yuima-class, yuima.model-class or yuima.carma-class object.
xinit: initial value vector of state variables.
true.parameter: named list of parameters.
space.discretized: flag to switch to space-discretized Euler Maruyama method.
increment.W: to specify Wiener increment for each time tics in advance.
increment.L: to specify Levy increment for each time tics in advance.
method: string Variable for simulation scheme. The default value method=euler uses the euler discretization for the simulation of a sample path.
nsim: Not used yet. Included only to match the standard genenirc in package stats.
seed: Not used yet. Included only to match the standard genenirc in package stats.
hurst: value of Hurst parameter for simulation of the fGn. Overrides the specified hurst slot.
methodfGn: simulation methods for fractional Gaussian noise.
...: passed to setSampling to create a sampling
sampling: a yuima.sampling-class object.
subsampling: a yuima.sampling-class object.
Details
simulate is a function to solve SDE using the Euler-Maruyama method. This function supports usual Euler-Maruyama method for multidimensional SDE, and space discretized Euler-Maruyama method for one dimensional SDE.
It simulates solutions of stochastic differential equations with Gaussian noise, fractional Gaussian noise awith/without jumps.
If a yuima-class object is passed as input, then the sampling information is taken from the slot sampling of the object. If a yuima.carma-class object, a yuima.model-class object or a yuima-class object with missing sampling slot is passed as input the sampling argument is used. If this argument is missing then the sampling structure is constructed from Initial, Terminal, etc. arguments (see setSampling for details on how to use these arguments).
For a COGARCH(p,q) process setting method=mixed implies that the simulation scheme is based on the solution of the state space process. For the case in which the underlying noise is a compound poisson Levy process, the trajectory is build firstly by simulation of the jump time, then the quadratic variation and the increments noise are simulated exactly at jump time. For the others Levy process, the simulation scheme is based on the discretization of the state space process solution.
Returns
yuima: a yuima-class object.
Author(s)
The YUIMA Project Team
Note
In the simulation of multi-variate Levy processes, the values of parameters have to be defined outside of simulate function in advance (see examples below).
Examples
set.seed(123)# Path-simulation for 1-dim diffusion process. # dXt = -0.3*Xt*dt + dWtmod <- setModel(drift="-0.3*y", diffusion=1, solve.variable=c("y"))str(mod)# Set the model in an `yuima' object with a sampling scheme. T <-1n <-1000samp <- setSampling(Terminal=T, n=n)ou <- setYuima(model=mod, sampling=samp)# Solve SDEs using Euler-Maruyama method. par(mfrow=c(3,1))ou <- simulate(ou, xinit=1)plot(ou)set.seed(123)ouB <- simulate(mod, xinit=1,sampling=samp)plot(ouB)set.seed(123)ouC <- simulate(mod, xinit=1, Terminal=1, n=1000)plot(ouC)par(mfrow=c(1,1))# Path-simulation for 1-dim diffusion process. # dXt = theta*Xt*dt + dWtmod1 <- setModel(drift="theta*y", diffusion=1, solve.variable=c("y"))str(mod1)ou1 <- setYuima(model=mod1, sampling=samp)# Solve SDEs using Euler-Maruyama method. ou1 <- simulate(ou1, xinit=1, true.p = list(theta=-0.3))plot(ou1)## Not run:# A multi-dimensional (correlated) diffusion process. # To describe the following model: # X=(X1,X2,X3); dXt = U(t,Xt)dt + V(t)dWt# For drift coeffcientU <- c("-x1","-2*x2","-t*x3")# For diffusion coefficient of X1 v1 <-function(t)0.5*sqrt(t)# For diffusion coefficient of X2v2 <-function(t) sqrt(t)# For diffusion coefficient of X3v3 <-function(t)2*sqrt(t)# correlationrho <-function(t) sqrt(1/2)# coefficient matrix for diffusion termV <- matrix( c("v1(t)","v2(t) * rho(t)","v3(t) * rho(t)","","v2(t) * sqrt(1-rho(t)^2)","","","","v3(t) * sqrt(1-rho(t)^2)"),3,3)# Model sde using "setModel" functioncor.mod <- setModel(drift = U, diffusion = V,state.variable=c("x1","x2","x3"),solve.variable=c("x1","x2","x3"))str(cor.mod)# Set the `yuima' object. cor.samp <- setSampling(Terminal=T, n=n)cor <- setYuima(model=cor.mod, sampling=cor.samp)# Solve SDEs using Euler-Maruyama method. set.seed(123)cor <- simulate(cor)plot(cor)# A non-negative process (CIR process)# dXt= a*(c-y)*dt + b*sqrt(Xt)*dWt sq <-function(x){y =0;if(x>0){y = sqrt(x);};return(y);} model<- setModel(drift="0.8*(0.2-x)", diffusion="0.5*sq(x)",solve.variable=c("x")) T<-10 n<-1000 sampling <- setSampling(Terminal=T,n=n) yuima<-setYuima(model=model, sampling=sampling) cir<-simulate(yuima,xinit=0.1) plot(cir)# solve SDEs using Space-discretized Euler-Maruyama methodv4 <-function(t,x){ return(0.5*(1-x)*sqrt(t))}mod_sd <- setModel(drift = c("0.1*x1","0.2*x2"), diffusion = c("v1(t)","v4(t,x2)"), solve.var=c("x1","x2"))samp_sd <- setSampling(Terminal=T, n=n)sd <- setYuima(model=mod_sd, sampling=samp_sd)sd <- simulate(sd, xinit=c(1,1), space.discretized=TRUE)plot(sd)## example of simulation by specifying increments## Path-simulation for 1-dim diffusion process## dXt = -0.3*Xt*dt + dWtmod <- setModel(drift="-0.3*y", diffusion=1,solve.variable=c("y"))str(mod)## Set the model in an `yuima' object with a sampling scheme. Terminal <-1n <-500mod.sampling <- setSampling(Terminal=Terminal, n=n)yuima.mod <- setYuima(model=mod, sampling=mod.sampling)##use original incrementdelta <- Terminal/n
my.dW <- rnorm(n * yuima.mod@model@noise.number,0, sqrt(delta))my.dW <- t(matrix(my.dW, nrow=n, ncol=yuima.mod@model@noise.number))## Solve SDEs using Euler-Maruyama method.yuima.mod <- simulate(yuima.mod, xinit=1, space.discretized=FALSE, increment.W=my.dW)if(!is.null(yuima.mod)){ dev.new()# x11() plot(yuima.mod)}## A multi-dimensional (correlated) diffusion process. ## To describe the following model: ## X=(X1,X2,X3); dXt = U(t,Xt)dt + V(t)dWt## For drift coeffcientU <- c("-x1","-2*x2","-t*x3")## For process 1diff.coef.1<-function(t)0.5*sqrt(t)## For process 2diff.coef.2<-function(t) sqrt(t)## For process 3diff.coef.3<-function(t)2*sqrt(t)## correlationcor.rho <-function(t) sqrt(1/2)## coefficient matrix for diffusion termV <- matrix( c("diff.coef.1(t)","diff.coef.2(t) * cor.rho(t)","diff.coef.3(t) * cor.rho(t)","","diff.coef.2(t)","diff.coef.3(t) * sqrt(1-cor.rho(t)^2)","diff.coef.1(t) * cor.rho(t)","","diff.coef.3(t)"),3,3)## Model sde using "setModel" functioncor.mod <- setModel(drift = U, diffusion = V, solve.variable=c("x1","x2","x3"))str(cor.mod)## Set the `yuima' object.set.seed(123)obj.sampling <- setSampling(Terminal=Terminal, n=n)yuima.obj <- setYuima(model=cor.mod, sampling=obj.sampling)##use original dWmy.dW <- rnorm(n * yuima.obj@model@noise.number,0, sqrt(delta))my.dW <- t(matrix(my.dW, nrow=n, ncol=yuima.obj@model@noise.number))## Solve SDEs using Euler-Maruyama method.yuima.obj.path <- simulate(yuima.obj, space.discretized=FALSE, increment.W=my.dW)if(!is.null(yuima.obj.path)){ dev.new()# x11() plot(yuima.obj.path)}##:: sample for Levy process ("CP" type)## specify the jump term as c(x,t)dzobj.model <- setModel(drift=c("-theta*x"), diffusion="sigma",jump.coeff="1", measure=list(intensity="1", df=list("dnorm(z, 0, 1)")),measure.type="CP", solve.variable="x")##:: Parameterslambda <-3theta <-6sigma <-1xinit <- runif(1)N <-500h <- N^(-0.7)eps <- h/50n <-50*N
T <- N*h
set.seed(123)obj.sampling <- setSampling(Terminal=T, n=n)obj.yuima <- setYuima(model=obj.model, sampling=obj.sampling)X <- simulate(obj.yuima, xinit=xinit, true.parameter=list(theta=theta, sigma=sigma))dev.new()plot(X)##:: sample for Levy process ("CP" type)## specify the jump term as c(x,t,z)## same plot as above exampleobj.model <- setModel(drift=c("-theta*x"), diffusion="sigma",jump.coeff="z", measure=list(intensity="1", df=list("dnorm(z, 0, 1)")),measure.type="CP", solve.variable="x")set.seed(123)obj.sampling <- setSampling(Terminal=T, n=n)obj.yuima <- setYuima(model=obj.model, sampling=obj.sampling)X <- simulate(obj.yuima, xinit=xinit, true.parameter=list(theta=theta, sigma=sigma))dev.new()plot(X)##:: sample for Levy process ("code" type)## dX_{t} = -x dt + dZ_tobj.model <- setModel(drift="-x", xinit=1, jump.coeff="1", measure.type="code",measure=list(df="rIG(z, 1, 0.1)"))obj.sampling <- setSampling(Terminal=10, n=10000)obj.yuima <- setYuima(model=obj.model, sampling=obj.sampling)result <- simulate(obj.yuima)dev.new()plot(result)##:: sample for multidimensional Levy process ("code" type)## dX = (theta - A X)dt + dZ,## theta=(theta_1, theta_2) = c(1,.5)## A=[a_ij], a_11 = 2, a_12 = 1, a_21 = 1, a_22=2require(yuima)x0 <- c(1,1)beta <- c(.1,.1)mu <- c(0,0)delta0 <-1alpha <-1Lambda <- matrix(c(1,0,0,1),2,2)cc <- matrix(c(1,0,0,1),2,2)obj.model <- setModel(drift=c("1 - 2*x1-x2",".5-x1-2*x2"), xinit=x0,solve.variable=c("x1","x2"), jump.coeff=cc, measure.type="code", measure=list(df="rNIG(z, alpha, beta, delta0, mu, Lambda)"))obj.sampling <- setSampling(Terminal=10, n=10000)obj.yuima <- setYuima(model=obj.model, sampling=obj.sampling)result <- simulate(obj.yuima,true.par=list( alpha=alpha, beta=beta, delta0=delta0, mu=mu, Lambda=Lambda))plot(result)# Path-simulation for a Carma(p=2,q=1) model driven by a Brownian motion:carma1<-setCarma(p=2,q=1)str(carma1)# Set the sampling schemesamp<-setSampling(Terminal=100,n=10000)# Set the values of the model parameterspar.carma1<-list(b0=1,b1=2.8,a1=2.66,a2=0.3)set.seed(123)sim.carma1<-simulate(carma1, true.parameter=par.carma1, sampling=samp)plot(sim.carma1)# Path-simulation for a Carma(p=2,q=1) model driven by a Compound Poisson process.carma1<-setCarma(p=2, q=1, measure=list(intensity="1",df=list("dnorm(z, 0, 1)")), measure.type="CP")# Set Sampling schemesamp<-setSampling(Terminal=100,n=10000)# Fix carma parameterspar.carma1<-list(b0=1, b1=2.8, a1=2.66, a2=0.3)set.seed(123)sim.carma1<-simulate(carma1, true.parameter=par.carma1, sampling=samp)plot(sim.carma1)## End(Not run)