snr function

Calculating Self-normalized Residuals for SDEs

Calculating Self-normalized Residuals for SDEs

Calculate self-normalized residuals based on the Gaussian quasi-likelihood estimator. UTF-8

snr(yuima, start, lower, upper, withdrift)

Arguments

  • yuima: a yuima object.
  • lower: a named list for specifying lower bounds of parameters.
  • upper: a named list for specifying upper bounds of parameters.
  • start: initial values to be passed to the optimizer.
  • withdrift: use drift information for constructing self-normalized residuals. by default, withdrift = FALSE

Details

This function calculates the Gaussian quasi maximum likelihood estimator and associated self-normalized residuals.

Returns

  • estimator: Gaussian quasi maximum likelihood estimator

  • snr: self-normalized residuals based on the Gaussian quasi maximum likelihood estimator

References

Masuda, H. (2013). Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes. Stochastic Processes and their Applications 123 (2013), 2752--2778

Author(s)

The YUIMA Project Team

Contacts: Yuma Uehara y-uehara@ism.ac.jp

Examples

## Not run: # Test code (1. diffusion case) yuima.mod <- setModel(drift="-theta*x",diffusion="theta1/sqrt(1+x^2)") n <- 10000 ysamp <- setSampling(Terminal=n^(1/3),n=n) yuima <- setYuima(model=yuima.mod, sampling=ysamp) set.seed(123) yuima <- simulate(yuima, xinit=0, true.parameter = list(theta=2,theta1=3)) start=list(theta=3,theta1=0.5) lower=list(theta=1,theta1=0.3) upper=list(theta=5,theta1=3) res <- snr(yuima,start,lower,upper) str(res) # Test code (2.jump diffusion case) a<-3 b<-5 mod <- setModel(drift="10-theta*x", #drift="10-3*x/(1+x^2)", diffusion="theta1*(2+x^2)/(1+x^2)", jump.coeff="1", # measure=list(intensity="10",df=list("dgamma(z, a, b)")), measure=list(intensity="10",df=list("dunif(z, a, b)")), measure.type="CP") T <- 100 ## Terminal n <- 10000 ## generation size samp <- setSampling(Terminal=T, n=n) ## define sampling scheme yuima <- setYuima(model = mod, sampling = samp) yuima <- simulate(yuima, xinit=1, true.parameter=list(theta=2,theta1=sqrt(2),a=a,b=b), sampling = samp) start=list(theta=3,theta1=0.5) lower=list(theta=1,theta1=0.3) upper=list(theta=5,theta1=3) res <- snr(yuima,start,lower,upper) str(res) ## End(Not run)
  • Maintainer: Stefano M. Iacus
  • License: GPL-2
  • Last published: 2025-04-16