fixed1 function

Fixed-effects beta regression with inflation at 1

Fixed-effects beta regression with inflation at 1

Internal function called by function zoib; Fits a fixed-effects beta regression a response variable bounded within (0, 1].

fixed1(y, n, xmu.1, p.xmu, xsum.1, p.xsum, x1.1, p.x1, prior1, prec.int, prec.DN, lambda.L1, lambda.L2, lambda.ARD, link, n.chain,inits, seed)

Arguments

  • y: A univariate response variable taking value from (0, 1].
  • n: Number of rows in the data set.
  • xmu.1: Design matrix associated with the fixed effects in the linear predictor of g(mean of the beta piece), where g() is link function.
  • p.xmu: Number of columns in xmu.1.
  • xsum.1: Design matrix associated with the fixed effects in linear predictor of the log(dispersion parameter of the beta piece).
  • p.xsum: Number of columns in xsum.1.
  • x1.1: Design matrix associated with the fixed effects in linear predictor of the g(Pr(y=1)), where g() is link function.
  • p.x1: Number of columns in x1.1.
  • prior1: Internally generated data (a vector of dimension 4). Prior choice for the regression coefficients in each of the 4 linear predictors of the 4 link functions.
  • prec.int: The precision parameter in the prior distributions (diffuse normal) of the intercepts in the linear predictors.
  • prec.DN: The precision parmeter in the prior distributions of the regression coefficients in the linear predictors if the diffuse normal prior is chosen.
  • lambda.ARD: The scale parameter in the prior distributions of the regression coefficients in the linear predictors if the ARD prior is chosen.
  • lambda.L1: The scale parameter in the prior distributions of the regression coefficients in the linear predictors if the L1-like prior is chosen.
  • lambda.L2: The scale parameter in the prior distributions of the regression coefficients in the linear predictors if the L2-like prior is chosen.
  • link: Internally generated variable containing the information on the choice of link functions for the mean of the beta piece.
  • n.chain: Number of chains for the MCMC sampling.
  • inits: initial parameter for model parameters.
  • seed: seeds for results reproducibility

Returns

Internal function. Returned values are used internally

Author(s)

Fang Liu (fang.liu.131@nd.edu)

See Also

See Also as zoib

  • Maintainer: Fang Liu
  • License: GPL (>= 3)
  • Last published: 2023-05-21