Panel data with sales volume for a package of Borden Sliced Cheese as well as a measure of display activity and price. Weekly data aggregated to the "key" account or retailer/market level.
data
data(cheese)
Format
A data frame with 5555 observations on the following 4 variables:
$RETAILER
a list of 88 retailers
$VOLUME
unit sales
$DISP
percent ACV on display (a measure of advertising display activity)
$PRICE
in U.S. dollars
Source
Boatwright, Peter, Robert McCulloch, and Peter Rossi (1999), "Account-Level Modeling for Trade Promotion," Journal of the American Statistical Association 94, 1063--1073.
References
Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
Examples
data(cheese)cat(" Quantiles of the Variables ",fill=TRUE)mat = apply(as.matrix(cheese[,2:4]),2, quantile)print(mat)## example of processing for use with rhierLinearModelif(0){ retailer = levels(cheese$RETAILER) nreg = length(retailer) nvar =3 regdata =NULLfor(reg in1:nreg){ y = log(cheese$VOLUME[cheese$RETAILER==retailer[reg]]) iota = c(rep(1,length(y))) X = cbind(iota, cheese$DISP[cheese$RETAILER==retailer[reg]], log(cheese$PRICE[cheese$RETAILER==retailer[reg]])) regdata[[reg]]= list(y=y, X=X)} Z = matrix(c(rep(1,nreg)), ncol=1) nz = ncol(Z)## run each individual regression and store results lscoef = matrix(double(nreg*nvar), ncol=nvar)for(reg in1:nreg){ coef = lsfit(regdata[[reg]]$X, regdata[[reg]]$y, intercept=FALSE)$coef
if(var(regdata[[reg]]$X[,2])==0){ lscoef[reg,1]=coef[1] lscoef[reg,3]=coef[2]}else{lscoef[reg,]=coef}} R =2000 Data = list(regdata=regdata, Z=Z) Mcmc = list(R=R, keep=1) set.seed(66) out = rhierLinearModel(Data=Data, Mcmc=Mcmc) cat("Summary of Delta Draws", fill=TRUE) summary(out$Deltadraw) cat("Summary of Vbeta Draws", fill=TRUE) summary(out$Vbetadraw)# plot hier coefsif(0){plot(out$betadraw)}}