cheese dataset

Sliced Cheese Data

Sliced Cheese Data

Panel data with sales volume for a package of Borden Sliced Cheese as well as a measure of display activity and price. Weekly data aggregated to the "key" account or retailer/market level. data

data(cheese)

Format

A data frame with 5555 observations on the following 4 variables:

$RETAILERa list of 88 retailers
$VOLUMEunit sales
$DISPpercent ACV on display (a measure of advertising display activity)
$PRICEin U.S. dollars

Source

Boatwright, Peter, Robert McCulloch, and Peter Rossi (1999), "Account-Level Modeling for Trade Promotion," Journal of the American Statistical Association 94, 1063--1073.

References

Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.

Examples

data(cheese) cat(" Quantiles of the Variables ",fill=TRUE) mat = apply(as.matrix(cheese[,2:4]), 2, quantile) print(mat) ## example of processing for use with rhierLinearModel if(0) { retailer = levels(cheese$RETAILER) nreg = length(retailer) nvar = 3 regdata = NULL for (reg in 1:nreg) { y = log(cheese$VOLUME[cheese$RETAILER==retailer[reg]]) iota = c(rep(1,length(y))) X = cbind(iota, cheese$DISP[cheese$RETAILER==retailer[reg]], log(cheese$PRICE[cheese$RETAILER==retailer[reg]])) regdata[[reg]] = list(y=y, X=X) } Z = matrix(c(rep(1,nreg)), ncol=1) nz = ncol(Z) ## run each individual regression and store results lscoef = matrix(double(nreg*nvar), ncol=nvar) for (reg in 1:nreg) { coef = lsfit(regdata[[reg]]$X, regdata[[reg]]$y, intercept=FALSE)$coef if (var(regdata[[reg]]$X[,2])==0) { lscoef[reg,1]=coef[1] lscoef[reg,3]=coef[2] } else {lscoef[reg,]=coef} } R = 2000 Data = list(regdata=regdata, Z=Z) Mcmc = list(R=R, keep=1) set.seed(66) out = rhierLinearModel(Data=Data, Mcmc=Mcmc) cat("Summary of Delta Draws", fill=TRUE) summary(out$Deltadraw) cat("Summary of Vbeta Draws", fill=TRUE) summary(out$Vbetadraw) # plot hier coefs if(0) {plot(out$betadraw)} }
  • Maintainer: Peter Rossi
  • License: GPL (>= 2)
  • Last published: 2023-09-23

About the dataset

  • Number of rows: 5555
  • Number of columns: 4
  • Class: data.frame

Column names and types

  • RETAILER:factor
  • VOLUME:integer
  • DISP:numeric
  • PRICE:numeric