parameter: on object created by initializeParameterObject.
gene.index: a integer or vector of integers representing the gene(s) of interesst.
samples: number of samples for the posterior estimate
quantiles: vector of quantiles, (default: c(0.025, 0.975))
genome: if genome is given, then will include gene ids in output (default is NULL)
Returns
returns a vector with the mixture assignment of each gene corresbonding to gene.index in the same order as the genome.
Details
The returned vector is unnamed as gene ids are only stored in the genome object, but the gene.index vector can be used to match the assignment to the genome.
Examples
genome_file <- system.file("extdata","genome.fasta", package ="AnaCoDa")genome <- initializeGenomeObject(file = genome_file)sphi_init <- c(1,1)numMixtures <-2geneAssignment <- c(rep(1,floor(length(genome)/2)),rep(2,ceiling(length(genome)/2)))parameter <- initializeParameterObject(genome = genome, sphi = sphi_init, num.mixtures = numMixtures, gene.assignment = geneAssignment, mixture.definition ="allUnique")model <- initializeModelObject(parameter = parameter, model ="ROC")samples <-2500thinning <-50adaptiveWidth <-25mcmc <- initializeMCMCObject(samples = samples, thinning = thinning, adaptive.width=adaptiveWidth, est.expression=TRUE, est.csp=TRUE, est.hyper=TRUE, est.mix =TRUE)divergence.iteration <-10## Not run:runMCMC(mcmc = mcmc, genome = genome, model = model, ncores =4, divergence.iteration = divergence.iteration)# get the estimated expression values for all genes based on the mixture # they are assigned to at each stepestimatedExpression <- getExpressionEstimates(parameter,1:length(genome),1000)## End(Not run)