AnaCoDa0.1.4.4 package

Analysis of Codon Data under Stationarity using a Bayesian Framework

AAToCodon

Amino Acid to codon set

acfCSP

Plots ACF for codon specific parameter traces

acfMCMC

Autocorrelation function for the likelihood or posterior trace

addObservedSynthesisRateSet

Add gene observed synthesis rates

aminoAcids

Amino acids

calculateMarginalLogLikelihood

Calculates the marginal log-likelihood for a set of parameters

calculateSCUO

calculates the synonymous codon usage order (SCUO)

codons

Codons

codonToAA

translates codon to amino acid

convergence.test

Convergence Test

findOptimalCodon

Find and return list of optimal codons

fixDEta

fixDEta

fixDM

fixDM

fixSphi

fixSphi

geomMean

Take the geometric mean of a vector

getAdaptiveWidth

getAdaptiveWidth

getCAI

Calculate the Codon Adaptation Index

getCAIweights

Calculate the CAI codon weigths for a reference genome

getCodonCounts

Get Codon Counts For all Amino Acids

getCodonCountsForAA

Get Codon Counts For a specific Amino Acid

getCodonSpecificPosteriorMeanForCodon

getCodonSpecificPosteriorMeanForCodon

getCodonSpecificPosteriorVarianceForCodon

getCodonSpecificPosteriorVarianceForCodon

getCodonSpecificQuantilesForCodon

getCodonSpecificQuantilesForCodon

getCSPEstimates

Return Codon Specific Paramters (or write to csv) estimates as data.fr...

getEstimatedMixtureAssignmentForGene

getEstimatedMixtureAssignmentForGene

getEstimatedMixtureAssignmentProbabilitiesForGene

getEstimatedMixtureAssignmentProbabilitiesForGene

getExpressionEstimates

Returns the estimated phi posterior for a gene

getGroupList

getGroupList

getLogLikelihoodTrace

getLogLikelihoodTrace

getLogPosteriorMean

getLogPosteriorMean

getLogPosteriorTrace

getLogPosteriorTrace

getMixtureAssignmentEstimate

Returns mixture assignment estimates for each gene

getNames

Gene Names of Genome

getNc

Calculate the Effective Number of Codons

getNcAA

Calculate the Effective Number of Codons for each Amino Acid

getNoiseOffsetPosteriorMean

getNoiseOffsetPosteriorMean

getNoiseOffsetVariance

getNoiseOffsetVariance

getObservedSynthesisRateSet

Get gene observed synthesis rates

getSamples

getSamples

getSelectionCoefficients

Calculate Selection coefficients

getStdDevSynthesisRatePosteriorMean

getStdDevSynthesisRatePosteriorMean

getStdDevSynthesisRateVariance

getStdDevSynthesisRateVariance

getStepsToAdapt

getStepsToAdapt

getSynthesisRate

getSynthesisRate

getSynthesisRatePosteriorMeanForGene

getSynthesisRatePosteriorMeanForGene

getSynthesisRatePosteriorVarianceForGene

getSynthesisRatePosteriorVarianceForGene

getThinning

getThinning

getTrace

extracts an object of traces from a parameter object.

getTraceObject

getTraceObject

initializeCovarianceMatrices

Initialize Covariance Matrices

initializeGenomeObject

Genome Initialization

initializeMCMCObject

Initialize MCMC

initializeModelObject

Model Initialization

initializeParameterObject

Initialize Parameter

initializeSynthesisRateByGenome

initializeSynthesisRateByGenome

initializeSynthesisRateByList

initializeSynthesisRateByList

initializeSynthesisRateByRandom

initializeSynthesisRateByRandom

initMutationCategories

initMutationCategories

initSelectionCategories

initSelectionCategories

length.Rcpp_Genome

Length of Genome

loadMCMCObject

Load MCMC Object

loadParameterObject

Load Parameter Object

plot.Rcpp_FONSEModel

Plot Model Object

plot.Rcpp_FONSEParameter

Plot Parameter

plot.Rcpp_MCMCAlgorithm

Plot MCMC algorithm

plot.Rcpp_ROCModel

Plot Model Object

plot.Rcpp_ROCParameter

Plot Parameter

plot.Rcpp_Trace

Plot Trace Object

plotAcceptanceRatios

Plot Acceptance ratios

plotCodonSpecificParameters

Plot Codon Specific Parameter

readPhiValue

readPhiValue

runMCMC

Run MCMC

setAdaptiveWidth

setAdaptiveWidth

setGroupList

setGroupList

setRestartFileSettings

setRestartFileSettings

setRestartSettings

Set Restart Settings

setSamples

setSamples

setStepsToAdapt

setStepsToAdapt

setThinning

setThinning

simulateGenome

simulateGenome

summary.Rcpp_Genome

Summary of Genome

writeMCMCObject

Write MCMC Object

writeParameterObject

Write Parameter Object to a File

Is a collection of models to analyze genome scale codon data using a Bayesian framework. Provides visualization routines and checkpointing for model fittings. Currently published models to analyze gene data for selection on codon usage based on Ribosome Overhead Cost (ROC) are: ROC (Gilchrist et al. (2015) <doi:10.1093/gbe/evv087>), and ROC with phi (Wallace & Drummond (2013) <doi:10.1093/molbev/mst051>). In addition 'AnaCoDa' contains three currently unpublished models. The FONSE (First order approximation On NonSense Error) model analyzes gene data for selection on codon usage against of nonsense error rates. The PA (PAusing time) and PANSE (PAusing time + NonSense Error) models use ribosome footprinting data to analyze estimate ribosome pausing times with and without nonsense error rate from ribosome footprinting data.