AntMAN1.1.0 package

Anthology of Mixture Analysis Tools

AM_clustering

Return the clustering matrix

AM_coclustering

Return the co-clustering matrix

AM_demo_mvb_poi

Returns an example of AM_mcmc_fit output produced by the multivariat...

AM_demo_mvn_poi

Returns an example of AM_mcmc_fit output produced by the multivariat...

AM_demo_uvn_poi

Returns an example of AM_mcmc_fit output produced by the univariate ...

AM_demo_uvp_poi

Returns an example of AM_mcmc_fit output produced by the univariate ...

AM_emp_bayes_uninorm

compute the hyperparameters of an Normal-Inverse-Gamma distribution us...

AM_extract

Extract values within a AM_mcmc_output object

AM_find_gamma_Delta

Given that the prior on M is a dirac delta, find the γ\gamma hyperpar...

AM_find_gamma_NegBin

Given that the prior on M is a Negative Binomial, find the γ\gamma hy...

AM_find_gamma_Pois

Given that the prior on M is a shifted Poisson, find the γ\gamma hype...

AM_mcmc_configuration

S3 class AM_mcmc_configuration

AM_mcmc_fit

Performs a Gibbs sampling

AM_mcmc_output

S3 class AM_mcmc_output

AM_mcmc_parameters

MCMC Parameters

AM_mcmc_refit

Performs a Gibbs sampling reusing previous configuration

AM_mix_components_prior

S3 class AM_mix_components_prior

AM_mix_components_prior_dirac

Generate a configuration object that contains a Point mass prior

AM_mix_components_prior_negbin

Generate a configuration object for a Shifted Negative Binomial prior ...

AM_mix_components_prior_pois

Generate a configuration object for a Poisson prior on the number of m...

AM_mix_hyperparams

S3 class AM_mix_hyperparams

AM_mix_hyperparams_multiber

multivariate Bernoulli mixture hyperparameters (Latent Class Analysis)

AM_mix_hyperparams_multinorm

multivariate Normal mixture hyperparameters

AM_mix_hyperparams_uninorm

univariate Normal mixture hyperparameters

AM_mix_hyperparams_unipois

univariate Poisson mixture hyperparameters

AM_mix_weights_prior

S3 class AM_mix_weights_prior

AM_mix_weights_prior_gamma

specify a prior on the hyperparameter γ\gamma for the Dirichlet mixtu...

AM_plot_chaincor

Plot the Autocorrelation function

AM_plot_density

Plot the density of variables from AM_mcmc_output object

AM_plot_mvb_cluster_frequency

Visualise the cluster frequency plot for the multivariate bernoulli mo...

AM_plot_pairs

Plot AM_mcmc_output scatterplot matrix

AM_plot_pmf

Plot the probability mass function of variables from AM_mcmc_output ...

AM_plot_similarity_matrix

Plot the Similarity Matrix

AM_plot_traces

Plot traces of variables from an AM_mcmc_output object

AM_plot_values

Plot posterior interval estimates obtained from MCMC draws

AM_prior

S3 class AM_prior

AM_prior_K_Delta

Computes the prior on the number of clusters

AM_prior_K_NegBin

computes the prior number of clusters

AM_prior_K_Pois

Computes the prior number of clusters

AM_salso

Sequentially Allocated Latent Structure Optimisation

AM_sample_multibin

AM_sample_multibin

AM_sample_multinorm

AM_sample_multinorm

AM_sample_uninorm

AM_sample_uninorm

AM_sample_unipois

AM_sample_unipois

AntMAN

AntMAN: A package for fitting finite Bayesian Mixture models with a ra...

IAM_compute_stirling_ricor_abs

Compute the logarithm of the absolute value of the generalized Sriling...

IAM_compute_stirling_ricor_log

Compute stirling ricor log

IAM_mcmc_error

Internal function used to compute the MCMC Error as a batch mean.

IAM_mcmc_neff

IAM_mcmc_neff MCMC Parameters

IAM_VnkDelta

Compute the value V(n,k), needed to caclulate the eppf of a Finite Dir...

IAM_VnkNegBin

Compute the value V(n,k), needed to caclulate the eppf of a Finite Dir...

IAM_VnkPoisson

Compute the value V(n,k), needed to caclulate the eppf of a Finite Dir...

list_values

Internal function that produces a string from a list of values

plot.AM_mcmc_output

plot AM_mcmc_output

plot.AM_prior

plot AM_prior

summary.AM_mcmc_configuration

summary information of the AM_mcmc_configuration object

summary.AM_mcmc_output

summary information of the AM_mcmc_output object

summary.AM_mix_components_prior

summary information of the AM_mix_components_prior object

summary.AM_mix_hyperparams

summary information of the AM_mix_hyperparams object

summary.AM_mix_weights_prior

summary information of the AM_mix_weights_prior object

summary.AM_prior

summary information of the AM_prior object

Fits finite Bayesian mixture models with a random number of components. The MCMC algorithm implemented is based on point processes as proposed by Argiento and De Iorio (2019) <arXiv:1904.09733> and offers a more computationally efficient alternative to reversible jump. Different mixture kernels can be specified: univariate Gaussian, multivariate Gaussian, univariate Poisson, and multivariate Bernoulli (latent class analysis). For the parameters characterising the mixture kernel, we specify conjugate priors, with possibly user specified hyper-parameters. We allow for different choices for the prior on the number of components: shifted Poisson, negative binomial, and point masses (i.e. mixtures with fixed number of components).