Utility Functions in CDM
CDM
Utility functions in CDM
.
## requireNamespace with package message for needed installation CDM_require_namespace(pkg) ## attach internal function in a package cdm_attach_internal_function(pack, fun) ## print function in summary cdm_print_summary_data_frame(obji, from=NULL, to=NULL, digits=3, rownames_null=FALSE) ## print summary call cdm_print_summary_call(object, call_name="call") ## print computation time cdm_print_summary_computation_time(object, time_name="time", time_start="s1", time_end="s2") ## string vector of matrix entries cdm_matrixstring( matr, string ) ## mvtnorm::rmvnorm with vector conversion for n=1 CDM_rmvnorm(n, mean=NULL, sigma, ...) ## fit univariate and multivariate normal distribution cdm_fit_normal(x, w) ## fit unidimensional factor analysis by unweighted least squares cdm_fa1(Sigma, method=1, maxit=50, conv=1E-5) ## another rbind.fill implementation CDM_rbind_fill( x, y ) ## fills a vector row-wise into a matrix cdm_matrix2( x, nrow ) ## fills a vector column-wise into a matrix cdm_matrix1( x, ncol ) ## SCAD thresholding operator cdm_penalty_threshold_scad(beta, lambda, a=3.7) ## lasso thresholding operator cdm_penalty_threshold_lasso(val, eta ) ## ridge thresholding operator cdm_penalty_threshold_ridge(beta, lambda) ## elastic net threshold operator cdm_penalty_threshold_elnet( beta, lambda, alpha ) ## SCAD-L2 thresholding operator cdm_penalty_threshold_scadL2(beta, lambda, alpha, a=3.7) ## truncated L1 penalty thresholding operator cdm_penalty_threshold_tlp( beta, tau, lambda ) ## MCP thresholding operator cdm_penalty_threshold_mcp(beta, lambda, a=3.7) ## general thresholding operator for regularization cdm_parameter_regularization(x, regular_type, regular_lam, regular_alpha=NULL, regular_tau=NULL ) ## values of penalty function cdm_penalty_values(x, regular_type, regular_lam, regular_tau=NULL, regular_alpha=NULL) ## thresholding operators regularization cdm_parameter_regularization(x, regular_type, regular_lam, regular_alpha=NULL, regular_tau=NULL) ## utility functions for P-EM acceleration cdm_pem_inits(parmlist) cdm_pem_inits_assign_parmlist(pem_pars, envir) cdm_pem_acceleration( iter, pem_parameter_index, pem_parameter_sequence, pem_pars, PEM_itermax, parmlist, ll_fct, ll_args, deviance.history=NULL ) cdm_pem_acceleration_assign_output_parameters(res_ll_fct, vars, envir, update) ## approximation of absolute value function and its derivative abs_approx(x, eps=1e-05) abs_approx_D1(x, eps=1e-05) ## information criteria cdm_calc_information_criteria(ic) cdm_print_summary_information_criteria(object, digits_crit=0, digits_penalty=2) ## string pasting cat_paste(...)
pkg
: An packagepack
: An packagefun
: An functionobji
: Objectfrom
: Integerto
: Integerdigits
: Number of digits used for printingrownames_null
: Logicalcall_name
: Charactertime_name
: Charactertime_start
: Charactertime_end
: Charactermatr
: Matrixstring
: Stringobject
: Objectn
: Integermean
: Mean vector or matrix if separate means for cases are provided. In this case, n
can be missing.sigma
: Covariance matrix...
: More arguments to be passed (or a list of arguments)x
: Matrix or vectory
: Matrix or vectorw
: Vector of sampling weightsnrow
: Integerncol
: IntegerSigma
: Covariance matrixmethod
: Method 1
indicates estimation of different item loadings, method 2
estimation of same item loadings.maxit
: Maximum number of iterationsconv
: Convergence criterionbeta
: Numericlambda
: Regularization parameteralpha
: Regularization parametera
: Parametertau
: Regularization parameterval
: Numericeta
: Regularization parameterregular_type
: Type of regularizationregular_lam
: Regularization parameter regular_tau
: Regularization parameter regular_alpha
: Regularization parameter parmlist
: List containing parameterspem_pars
: Vector containing parameter namesenvir
: Environmentupdate
: Logicaliter
: Iteration numberpem_parameter_index
: List with parameter indicespem_parameter_sequence
: List with updated parameter sequencePEM_itermax
: Maximum number of iterations for PEMll_fct
: Name of log-likelihood functionll_args
: Arguments of log-likelihood functiondeviance.history
: Deviance history, a data frame.res_ll_fct
: Result of maximized log-likelihood functionvars
: Vector containing parameter nameseps
: Numericic
: Listdigits_crit
: Integerdigits_penalty
: IntegerUseful links