CDM-utilities function

Utility Functions in CDM

Utility Functions in CDM

Utility functions in CDM.

## requireNamespace with package message for needed installation CDM_require_namespace(pkg) ## attach internal function in a package cdm_attach_internal_function(pack, fun) ## print function in summary cdm_print_summary_data_frame(obji, from=NULL, to=NULL, digits=3, rownames_null=FALSE) ## print summary call cdm_print_summary_call(object, call_name="call") ## print computation time cdm_print_summary_computation_time(object, time_name="time", time_start="s1", time_end="s2") ## string vector of matrix entries cdm_matrixstring( matr, string ) ## mvtnorm::rmvnorm with vector conversion for n=1 CDM_rmvnorm(n, mean=NULL, sigma, ...) ## fit univariate and multivariate normal distribution cdm_fit_normal(x, w) ## fit unidimensional factor analysis by unweighted least squares cdm_fa1(Sigma, method=1, maxit=50, conv=1E-5) ## another rbind.fill implementation CDM_rbind_fill( x, y ) ## fills a vector row-wise into a matrix cdm_matrix2( x, nrow ) ## fills a vector column-wise into a matrix cdm_matrix1( x, ncol ) ## SCAD thresholding operator cdm_penalty_threshold_scad(beta, lambda, a=3.7) ## lasso thresholding operator cdm_penalty_threshold_lasso(val, eta ) ## ridge thresholding operator cdm_penalty_threshold_ridge(beta, lambda) ## elastic net threshold operator cdm_penalty_threshold_elnet( beta, lambda, alpha ) ## SCAD-L2 thresholding operator cdm_penalty_threshold_scadL2(beta, lambda, alpha, a=3.7) ## truncated L1 penalty thresholding operator cdm_penalty_threshold_tlp( beta, tau, lambda ) ## MCP thresholding operator cdm_penalty_threshold_mcp(beta, lambda, a=3.7) ## general thresholding operator for regularization cdm_parameter_regularization(x, regular_type, regular_lam, regular_alpha=NULL, regular_tau=NULL ) ## values of penalty function cdm_penalty_values(x, regular_type, regular_lam, regular_tau=NULL, regular_alpha=NULL) ## thresholding operators regularization cdm_parameter_regularization(x, regular_type, regular_lam, regular_alpha=NULL, regular_tau=NULL) ## utility functions for P-EM acceleration cdm_pem_inits(parmlist) cdm_pem_inits_assign_parmlist(pem_pars, envir) cdm_pem_acceleration( iter, pem_parameter_index, pem_parameter_sequence, pem_pars, PEM_itermax, parmlist, ll_fct, ll_args, deviance.history=NULL ) cdm_pem_acceleration_assign_output_parameters(res_ll_fct, vars, envir, update) ## approximation of absolute value function and its derivative abs_approx(x, eps=1e-05) abs_approx_D1(x, eps=1e-05) ## information criteria cdm_calc_information_criteria(ic) cdm_print_summary_information_criteria(object, digits_crit=0, digits_penalty=2) ## string pasting cat_paste(...)

Arguments

  • pkg: An package
  • pack: An package
  • fun: An function
  • obji: Object
  • from: Integer
  • to: Integer
  • digits: Number of digits used for printing
  • rownames_null: Logical
  • call_name: Character
  • time_name: Character
  • time_start: Character
  • time_end: Character
  • matr: Matrix
  • string: String
  • object: Object
  • n: Integer
  • mean: Mean vector or matrix if separate means for cases are provided. In this case, n can be missing.
  • sigma: Covariance matrix
  • ...: More arguments to be passed (or a list of arguments)
  • x: Matrix or vector
  • y: Matrix or vector
  • w: Vector of sampling weights
  • nrow: Integer
  • ncol: Integer
  • Sigma: Covariance matrix
  • method: Method 1 indicates estimation of different item loadings, method 2 estimation of same item loadings.
  • maxit: Maximum number of iterations
  • conv: Convergence criterion
  • beta: Numeric
  • lambda: Regularization parameter
  • alpha: Regularization parameter
  • a: Parameter
  • tau: Regularization parameter
  • val: Numeric
  • eta: Regularization parameter
  • regular_type: Type of regularization
  • regular_lam: Regularization parameter λ\lambda
  • regular_tau: Regularization parameter τ\tau
  • regular_alpha: Regularization parameter α\alpha
  • parmlist: List containing parameters
  • pem_pars: Vector containing parameter names
  • envir: Environment
  • update: Logical
  • iter: Iteration number
  • pem_parameter_index: List with parameter indices
  • pem_parameter_sequence: List with updated parameter sequence
  • PEM_itermax: Maximum number of iterations for PEM
  • ll_fct: Name of log-likelihood function
  • ll_args: Arguments of log-likelihood function
  • deviance.history: Deviance history, a data frame.
  • res_ll_fct: Result of maximized log-likelihood function
  • vars: Vector containing parameter names
  • eps: Numeric
  • ic: List
  • digits_crit: Integer
  • digits_penalty: Integer