CDM8.2-6 package

Cognitive Diagnosis Modeling

anova.din

Likelihood Ratio Test for Model Comparisons

cdi.kli

Cognitive Diagnostic Indices based on Kullback-Leibler Information

CDM-package

tools:::Rd_package_title("CDM")

CDM-utilities

Utility Functions in CDM

cdm.est.class.accuracy

Classification Reliability in a CDM

coef

Extract Estimated Item Parameters and Skill Class Distribution Paramet...

Data-sim

Artificial Data: DINA and DINO

data.cdm

Several Datasets for the CDM Package

data.fraction

Fraction Subtraction Dataset with Different Subsets of Data and Differ...

data.pisa00R

PISA 2000 Reading Study (Chen & de la Torre, 2014)

deltaMethod

Variance Matrix of a Nonlinear Estimator Using the Delta Method

din.deterministic

Deterministic Classification and Joint Maximum Likelihood Estimation o...

din.equivalent.class

Calculation of Equivalent Skill Classes in the DINA/DINO Model

din

Parameter Estimation for Mixed DINA/DINO Model

din.validate.qmatrix

Q-Matrix Validation (Q-Matrix Modification) for Mixed DINA/DINO Model

din_identifiability

Identifiability Conditions of the DINA Model

discrim.index

Discrimination Indices at Item-Attribute, Item and Test Level

entropy.lca

Test-specific and Item-specific Entropy for Latent Class Models

equivalent.dina

Determination of a Statistically Equivalent DINA Model

eval_likelihood

Evaluation of Likelihood

gdd

Generalized Distance Discriminating Method

gdina.dif

Differential Item Functioning in the GDINA Model

gdina

Estimating the Generalized DINA (GDINA) Model

gdina.wald

Wald Statistic for Item Fit of the DINA and ACDM Rule for GDINA Model

gdm

General Diagnostic Model

ideal.response.pattern

Ideal Response Pattern

IRT.anova

Helper Function for Conducting Likelihood Ratio Tests

IRT.classify

Individual Classification for Fitted Models

IRT.compareModels

Comparisons of Several Models

IRT.data

S3 Method for Extracting Used Item Response Dataset

IRT.expectedCounts

S3 Method for Extracting Expected Counts

IRT.factor.scores

S3 Methods for Extracting Factor Scores (Person Classifications)

IRT.frequencies

S3 Method for Computing Observed and Expected Frequencies of Univariat...

IRT.IC

Information Criteria

IRT.irfprob

S3 Methods for Extracting Item Response Functions

IRT.irfprobPlot

Plot Item Response Functions

IRT.itemfit

S3 Methods for Computing Item Fit

IRT.jackknife

Jackknifing an Item Response Model

IRT.likelihood

S3 Methods for Extracting of the Individual Likelihood and the Individ...

IRT.marginal_posterior

S3 Method for Computation of Marginal Posterior Distribution

IRT.modelfit

S3 Methods for Assessing Model Fit

IRT.parameterTable

S3 Method for Extracting a Parameter Table

IRT.repDesign

Generation of a Replicate Design for IRT.jackknife

IRT.RMSD

Root Mean Square Deviation (RMSD) Item Fit Statistic

item_by_group

Create Dataset with Group-Specific Items

itemfit.rmsea

RMSEA Item Fit

itemfit.sx2

S-X2 Item Fit Statistic for Dichotomous Data

logLik

Extract Log-Likelihood

mcdina

Multiple Choice DINA Model

modelfit.cor

Assessing Model Fit and Local Dependence by Comparing Observed and Exp...

numerical_Hessian

Numerical Computation of the Hessian Matrix

osink

Opens and Closes a sink Connection

personfit.appropriateness

Appropriateness Statistic for Person Fit Assessment

plot.din

Plot Method for Objects of Class din

plot_item_mastery

S3 Methods for Plotting Item Probabilities

predict

Expected Values and Predicted Probabilities from Item Response Respons...

print.summary.din

Print Method for Objects of Class summary.din

reglca

Regularized Latent Class Analysis

sequential.items

Constructing a Dataset with Sequential Pseudo Items for Ordered Item R...

sim.din

Data Simulation Tool for DINA, DINO and mixed DINA and DINO Data

sim.gdina

Simulation of the GDINA model

sim_model

Simulate an Item Response Model

skill.cor

Tetrachoric or Polychoric Correlations between Attributes

skillspace.approximation

Skill Space Approximation

skillspace.hierarchy

Creation of a Hierarchical Skill Space

slca

Structured Latent Class Analysis (SLCA)

summary.din

Summary Method for Objects of Class din

summary_sink

Prints summary and sink Output in a File

vcov

Asymptotic Covariance Matrix, Standard Errors and Confidence Intervals

WaldTest

Wald Test for a Linear Hypothesis

Functions for cognitive diagnosis modeling and multidimensional item response modeling for dichotomous and polytomous item responses. This package enables the estimation of the DINA and DINO model (Junker & Sijtsma, 2001, <doi:10.1177/01466210122032064>), the multiple group (polytomous) GDINA model (de la Torre, 2011, <doi:10.1007/s11336-011-9207-7>), the multiple choice DINA model (de la Torre, 2009, <doi:10.1177/0146621608320523>), the general diagnostic model (GDM; von Davier, 2008, <doi:10.1348/000711007X193957>), the structured latent class model (SLCA; Formann, 1992, <doi:10.1080/01621459.1992.10475229>) and regularized latent class analysis (Chen, Li, Liu, & Ying, 2017, <doi:10.1007/s11336-016-9545-6>). See George, Robitzsch, Kiefer, Gross, and Uenlue (2017) <doi:10.18637/jss.v074.i02> or Robitzsch and George (2019, <doi:10.1007/978-3-030-05584-4_26>) for further details on estimation and the package structure. For tutorials on how to use the CDM package see George and Robitzsch (2015, <doi:10.20982/tqmp.11.3.p189>) as well as Ravand and Robitzsch (2015).

  • Maintainer: Alexander Robitzsch
  • License: GPL (>= 2)
  • Last published: 2022-08-25