Check necessary and sufficient identifiability conditions of the DINA model according Gu and Xu (xxxx) for a given Q-matrix.
din_identifiability(q.matrix)## S3 method for class 'din_identifiability'summary(object,...)
Arguments
q.matrix: Q-matrix
object: Object of class din_identifiability
...: Further arguments to be passed
Returns
List with values - dina_identified: Logical indicating whether the DINA model is identified
index_single: Condition 1: vector of logicals indicating whether skills are measured by at least one item with a single loading
is_three_items: Condition 2: vector of logicals indicating whether skills are measured by at least three items
submat_distinct: Condition 3: logical indicating whether all columns of the submatrix Q∗ are distinct.
References
Gu, Y., & Xu, G. (2018). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, xx(xx), xxx-xxx. https://doi.org/10.1007/s11336-018-9619-8
See Also
See din.equivalent.class for equivalent (i.e., non-distinguishable) skill classes in the DINA model.
Examples
############################################################################## EXAMPLE 1: Some examples of Gu and Xu (2019)##############################################################################* Matrix 1 in Equation (5) of Gu & Xu (2019)Q1 <- diag(3)Q2 <- matrix( scan(text="1 1 0 1 0 1 1 1 1 1 1 1"), ncol=3, byrow=TRUE)Q <- rbind(Q1, Q2)res <- CDM::din_identifiability(q.matrix=Q)summary(res)# remove two itemsres <- CDM::din_identifiability(q.matrix=Q[-c(2,5),])summary(res)#* Matrix 1 in Equation (6) of Gu & Xu (2019)Q1 <- diag(3)Q2 <- matrix( c(1,1,1), nrow=4, ncol=3, byrow=TRUE)Q <- rbind(Q1, Q2)res <- CDM::din_identifiability(q.matrix=Q)summary(res)