S3 Method for Computation of Marginal Posterior Distribution
S3 Method for Computation of Marginal Posterior Distribution
Computes marginal posterior distributions for fitted models in the CDM package.
IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE,...)## S3 method for class 'din'IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE,...)## S3 method for class 'gdina'IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE,...)## S3 method for class 'mcdina'IRT.marginal_posterior(object, dim, remove_zeroprobs=TRUE,...)
Arguments
object: Object of class din, gdina, mcdina
dim: Numeric or character vector indicating dimensions of posterior distribution which should be marginalized
remove_zeroprobs: Logical indicating whether classes with zero probabilities should be removed
...: Further arguments to be passed
Returns
List with entries - marg_post: Marginal posterior distribution
map: MAP estimate (individual classification)
theta: Skill classes
See Also
IRT.posterior
Examples
## Not run:############################################################################## EXAMPLE 1: Dataset with three hierarchical skills############################################################################## simulated data with hierarchical skills:# skill A with 4 levels, skill B with 2 levels and skill C with 3 levelsdata(data.cdm10, package="CDM"")dat <- data.cdm10$data
Q <- data.cdm10$q.matrix
print(Q)# define hierarchical skill structureB <- "A1 > A2 > A3
C1 > C2"
skill_space <- CDM::skillspace.hierarchy(B=B, skill.names=colnames(Q))zeroprob.skillclasses <- skill_space$zeroprob.skillclasses
# estimate DINA modelmod1 <- CDM::gdina( dat, q.matrix=Q, zeroprob.skillclasses=zeroprob.skillclasses, rule="DINA")summary(mod1)# classification for skill Ares <- CDM::IRT.marginal_posterior(object=mod1, dim=c("A1","A2","A3"))table(res$map)# classification for skill Bres <- CDM::IRT.marginal_posterior(object=mod1, dim=c("B"))table(res$map)# classification for skill Cres <- CDM::IRT.marginal_posterior(object=mod1, dim=c("C1","C2"))table(res$map)## End(Not run)