This function performs a Jackknife procedure for estimating standard errors for an item response model. The replication design must be defined by IRT.repDesign. Model fit is also assessed via Jackknife.
Statistical inference for derived parameters is performed by IRT.derivedParameters with a fitted object of class IRT.jackknife and a list with defining formulas.
IRT.jackknife(object,repDesign,...)IRT.derivedParameters(jkobject, derived.parameters )## S3 method for class 'gdina'IRT.jackknife(object, repDesign,...)## S3 method for class 'IRT.jackknife'coef(object, bias.corr=FALSE,...)## S3 method for class 'IRT.jackknife'vcov(object,...)
Arguments
object: Objects for which S3 method IRT.jackknife is defined.
repDesign: Replication design generated by IRT.repDesign.
jkobject: Object of class IRT.jackknife.
derived.parameters: List with defined derived parameters (see Example 2, Model 2).
bias.corr: Optional logical indicating whether a bias correction should be employed.
...: Further arguments to be passed.
Returns
List with following entries - jpartable: Parameter table with Jackknife estimates
parsM: Matrix with replicated statistics
vcov: Variance covariance matrix of parameters
Examples
## Not run:library(BIFIEsurvey)############################################################################## EXAMPLE 1: Multiple group DINA model with TIMSS data | Cluster sample#############################################################################data(data.timss11.G4.AUT.part, package="CDM")dat <- data.timss11.G4.AUT.part$data
q.matrix <- data.timss11.G4.AUT.part$q.matrix2
# extract itemsitems <- paste(q.matrix$item)# generate replicate designrdes <- CDM::IRT.repDesign( data=dat, wgt="TOTWGT", jktype="JK_TIMSS", jkzone="JKCZONE", jkrep="JKCREP")#--- Model 1: fit multiple group GDINA modelmod1 <- CDM::gdina( dat[,items], q.matrix=q.matrix[,-1], weights=dat$TOTWGT, group=dat$female +1)# jackknife Model 1jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )summary(jmod1)coef(jmod1)vcov(jmod1)############################################################################## EXAMPLE 2: DINA model | Simple random sampling#############################################################################data(sim.dina, package="CDM")data(sim.qmatrix, package="CDM")dat <- sim.dina
q.matrix <- sim.qmatrix
# generate replicate design with 50 jackknife zones (50 random groups)rdes <- CDM::IRT.repDesign( data=dat, jktype="JK_RANDOM", ngr=50)#--- Model 1: DINA modelmod1 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINA")summary(mod1)# jackknife DINA modeljmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )summary(jmod1)#--- Model 2: DINO modelmod2 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINO")summary(mod2)# jackknife DINA modeljmod2 <- CDM::IRT.jackknife( object=mod2, repDesign=rdes )summary(jmod2)IRT.compareModels( mod1, mod2 )# statistical inference for derived parametersderived.parameters <- list("skill1"=~0+ I(prob_skillV1_lev1_group1),"skilldiff12"=~0+ I( prob_skillV2_lev1_group1 - prob_skillV1_lev1_group1 ),"skilldiff13"=~0+ I( prob_skillV3_lev1_group1 - prob_skillV1_lev1_group1 ))jmod2a <- CDM::IRT.derivedParameters( jmod2, derived.parameters=derived.parameters )summary(jmod2a)coef(jmod2a)## End(Not run)