din.deterministic function

Deterministic Classification and Joint Maximum Likelihood Estimation of the Mixed DINA/DINO Model

Deterministic Classification and Joint Maximum Likelihood Estimation of the Mixed DINA/DINO Model

This function allows the estimation of the mixed DINA/DINO model by joint maximum likelihood and a deterministic classification based on ideal latent responses.

din.deterministic(dat, q.matrix, rule="DINA", method="JML", conv=0.001, maxiter=300, increment.factor=1.05, progress=TRUE)

Arguments

  • dat: Data frame of dichotomous item responses
  • q.matrix: Q-matrix with binary entries (see din).
  • rule: The condensation rule (see din).
  • method: Estimation method. The default is joint maximum likelihood estimation (JML). Other options include an adaptive estimation of guessing and slipping parameters (adaptive) while using these estimated parameters as weights in the individual deviation function and classification based on the Hamming distance (hamming) and the weighted Hamming distance (weighted.hamming) (see Chiu & Douglas, 2013).
  • conv: Convergence criterion for guessing and slipping parameters
  • maxiter: Maximum number of iterations
  • increment.factor: A numeric value of at least one which could help to improve convergence behavior and decreases parameter increments in every iteration. This option is disabled by setting this argument to 1.
  • progress: An optional logical indicating whether the function should print the progress of iteration in the estimation process.

Returns

A list with following entries - attr.est: Estimated attribute patterns

  • criterion: Criterion of the classification function. For joint maximum likelihood it is the deviance.

  • guess: Estimated guessing parameters

  • slip: Estimated slipping parameters

  • prederror: Average individual prediction error

  • q.matrix: Used Q-matrix

  • dat: Used data frame

References

Chiu, C. Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30, 225-250.

See Also

For estimating the mixed DINA/DINO model using marginal maximum likelihood estimation see din.

See also the NPCD::JMLE function in the NPCD package for joint maximum likelihood estimation of the DINA or the DINO model.

Examples

############################################################################# # EXAMPLE 1: 13 items and 3 attributes ############################################################################# set.seed(679) N <- 3000 # specify true Q-matrix q.matrix <- matrix( 0, 13, 3 ) q.matrix[1:3,1] <- 1 q.matrix[4:6,2] <- 1 q.matrix[7:9,3] <- 1 q.matrix[10,] <- c(1,1,0) q.matrix[11,] <- c(1,0,1) q.matrix[12,] <- c(0,1,1) q.matrix[13,] <- c(1,1,1) q.matrix <- rbind( q.matrix, q.matrix ) colnames(q.matrix) <- paste0("Attr",1:ncol(q.matrix)) # simulate data according to the DINA model dat <- CDM::sim.din( N=N, q.matrix)$dat # Joint maximum likelihood estimation (the default: method="JML") res1 <- CDM::din.deterministic( dat, q.matrix ) # Adaptive estimation of guessing and slipping parameters res <- CDM::din.deterministic( dat, q.matrix, method="adaptive" ) # Classification using Hamming distance res <- CDM::din.deterministic( dat, q.matrix, method="hamming" ) # Classification using weighted Hamming distance res <- CDM::din.deterministic( dat, q.matrix, method="weighted.hamming" ) ## Not run: #********* load NPCD library for JML estimation library(NPCD) # DINA model res <- NPCD::JMLE( Y=dat[1:100,], Q=q.matrix, model="DINA" ) as.data.frame(res$par.est ) # item parameters res$alpha.est # skill classifications # RRUM model res <- NPCD::JMLE( Y=dat[1:100,], Q=q.matrix, model="RRUM" ) as.data.frame(res$par.est ) ## End(Not run)