Variance Matrix of a Nonlinear Estimator Using the Delta Method
Computes the variance of a nonlinear parameter using the delta method.
deltaMethod(derived.pars, est, Sigma, h=1e-05)
derived.pars
: Vector of derived parameters written in formula framework (see Examples).est
: Vector of parameter estimatesSigma
: Covariance matrix of parametersh
: Numerical differentiation parametercoef: Vector of nonlinear parameters
vcov: Covariance matrix of nonlinear parameters
se: Vector of standard errors
A: First derivative of nonlinear transformation
univarTest: Data frame containing univariate summary of nonlinear parameters
WaldTest: Multivariate parameter test for nonlinear parameter
See car::deltaMethod
or msm::deltamethod
.
############################################################################# # EXAMPLE 1: Nonlinear parameter ############################################################################# #-- parameter estimate est <- c( 510.67, 102.57) names(est) <- c("mu", "sigma") #-- covariance matrix Sigma <- matrix( c(5.83, 0.45, 0.45, 3.21 ), nrow=2, ncol=2 ) colnames(Sigma) <- rownames(Sigma) <- names(est) #-- define derived nonlinear parameters derived.pars <- list( "d"=~ I( ( mu - 508 ) / sigma ), "dsig"=~ I( sigma / 100 - 1) ) #*** apply delta method res <- CDM::deltaMethod( derived.pars, est, Sigma ) res
Useful links