deltaMethod function

Variance Matrix of a Nonlinear Estimator Using the Delta Method

Variance Matrix of a Nonlinear Estimator Using the Delta Method

Computes the variance of a nonlinear parameter using the delta method.

deltaMethod(derived.pars, est, Sigma, h=1e-05)

Arguments

  • derived.pars: Vector of derived parameters written in formula framework (see Examples).
  • est: Vector of parameter estimates
  • Sigma: Covariance matrix of parameters
  • h: Numerical differentiation parameter

Returns

  • coef: Vector of nonlinear parameters

  • vcov: Covariance matrix of nonlinear parameters

  • se: Vector of standard errors

  • A: First derivative of nonlinear transformation

  • univarTest: Data frame containing univariate summary of nonlinear parameters

  • WaldTest: Multivariate parameter test for nonlinear parameter

See Also

See car::deltaMethod or msm::deltamethod.

Examples

############################################################################# # EXAMPLE 1: Nonlinear parameter ############################################################################# #-- parameter estimate est <- c( 510.67, 102.57) names(est) <- c("mu", "sigma") #-- covariance matrix Sigma <- matrix( c(5.83, 0.45, 0.45, 3.21 ), nrow=2, ncol=2 ) colnames(Sigma) <- rownames(Sigma) <- names(est) #-- define derived nonlinear parameters derived.pars <- list( "d"=~ I( ( mu - 508 ) / sigma ), "dsig"=~ I( sigma / 100 - 1) ) #*** apply delta method res <- CDM::deltaMethod( derived.pars, est, Sigma ) res