Generation of a Replicate Design for IRT.jackknife
Generation of a Replicate Design for IRT.jackknife
This function generates a Jackknife replicate design which is necessary to use the IRT.jackknife function. The function is a wrapper to BIFIE.data.jack in the BIFIEsurvey package.
data: Dataset which must contain weights and item responses
wgt: Vector with sample weights
jktype: Type of jackknife procedure for creating the BIFIE.data object. jktype="JK_TIMSS" refers to TIMSS/PIRLS datasets. The type "JK_GROUP" creates jackknife weights based on a user defined grouping, the type "JK_RANDOM" creates random groups. The number of random groups can be defined in ngr. The argument type="RW_PISA" extracts the replicated design with balanced repeated replicate weights from PISA datasets into objects of class IRT.repDesign. Bootstrap samples can be obtained by type="BOOT".
jkzone: Variable name for jackknife zones. If jktype="JK_TIMSS", then jkzone="JKZONE". However, this default can be overwritten.
jkrep: Variable name containing Jackknife replicates
jkfac: Factor for multiplying jackknife replicate weights. If jktype="JK_TIMSS", then jkfac=2.
fayfac: Fay factor. For Jackknife, the default is 1. For a Bootstrap with R samples with replacement, the Fay factor is 1/R.
wgtrep: Already available replicate design
ngr: Number of groups
Nboot: Number of bootstrap samples
seed: Random seed
Returns
A list with following entries - wgt: Vector with weights
wgtrep: Matrix containing the replicate design
fayfac: Fay factor needed for Jackknife calculations
See Also
See IRT.jackknife for further examples.
See the BIFIE.data.jack function in the BIFIEsurvey package.
Examples
## Not run:# load the BIFIEsurvey packagelibrary(BIFIEsurvey)############################################################################## EXAMPLE 1: Design with Jackknife replicate weights in TIMSS#############################################################################data(data.timss11.G4.AUT, package="CDM")dat <- CDM::data.timss11.G4.AUT$data
# generate designrdes <- CDM::IRT.repDesign( data=dat, wgt="TOTWGT", jktype="JK_TIMSS", jkzone="JKCZONE", jkrep="JKCREP")str(rdes)############################################################################## EXAMPLE 2: Bootstrap resampling#############################################################################data(sim.qmatrix, package="CDM")q.matrix <- CDM::sim.qmatrix
# simulate data according to the DINA modeldat <- CDM::sim.din(N=2000, q.matrix=q.matrix )$dat
# bootstrap with 300 random samplesrdes <- CDM::IRT.repDesign( data=dat, jktype="BOOT", Nboot=300)## End(Not run)