skillspace.approximation function

Skill Space Approximation

Skill Space Approximation

This function approximates the skill space with KK skills to approximate a (typically high-dimensional) skill space of 2K2^K classes by LL classes (L<2K)(L < 2^K). The large number of latent classes are represented by underlying continuous latent variables for the dichotomous skills (see George & Robitzsch, 2014, for more details).

skillspace.approximation(L, K, nmax=5000)

Arguments

  • L: Number of skill classes used for approximation

  • K: Number of skills

  • nmax: Number of quasi-randomly generated skill classes using the QUnif

    function in sfsmisc

Returns

A matrix containing skill classes in rows

References

George, A. C., & Robitzsch, A. (2014). Multiple group cognitive diagnosis models, with an emphasis on differential item functioning. Psychological Test and Assessment Modeling, 56(4), 405-432.

Note

This function uses the sfsmisc::QUnif function from the sfsmisc

package.

See Also

See also gdina (Example 9).

Examples

############################################################################# # EXAMPLE 1: Approximate a skill space of K=8 eight skills by 20 classes ############################################################################# #=> 2^8=256 latent classes if all latent classes would be used CDM::skillspace.approximation( L=20, K=8 ) ## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] ## P00000000 0 0 0 0 0 0 0 0 ## P00000001 0 0 0 0 0 0 0 1 ## P00001011 0 0 0 0 1 0 1 1 ## P00010011 0 0 0 1 0 0 1 1 ## P00101001 0 0 1 0 1 0 0 1 ## [...] ## P11011110 1 1 0 1 1 1 1 0 ## P11100110 1 1 1 0 0 1 1 0 ## P11111111 1 1 1 1 1 1 1 1