ClusterR1.3.3 package

Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans, K-Medoids and Affinity Propagation Clustering

AP_affinity_propagation

Affinity propagation clustering

distance_matrix

Distance matrix calculation

entropy_formula

entropy formula (used in external_validation function)

AP_preferenceRange

Affinity propagation preference range

center_scale

Function to scale and/or center the data

Clara_Medoids

Clustering large applications

Cluster_Medoids

Partitioning around medoids

cost_clusters_from_dissim_medoids

Compute the cost and clusters based on an input dissimilarity matrix a...

external_validation

external clustering validation

function_interactive

Interactive function for consecutive plots ( using dissimilarities or ...

GMM

Gaussian Mixture Model clustering

KMeans_arma

k-means using the Armadillo library

KMeans_rcpp

k-means using RcppArmadillo

MiniBatchKmeans

Mini-batch-k-means using RcppArmadillo

Optimal_Clusters_GMM

Optimal number of Clusters for the gaussian mixture models

Optimal_Clusters_KMeans

Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans

Optimal_Clusters_Medoids

Optimal number of Clusters for the partitioning around Medoids functio...

plot_2d

2-dimensional plots

predict_GMM

Prediction function for a Gaussian Mixture Model object

predict_KMeans

Prediction function for the k-means

predict_MBatchKMeans

Prediction function for Mini-Batch-k-means

predict_Medoids

Predictions for the Medoid functions

Silhouette_Dissimilarity_Plot

Plot of silhouette widths or dissimilarities

silhouette_of_clusters

Silhouette width based on pre-computed clusters

tryCatch_GMM

tryCatch function to prevent armadillo errors

tryCatch_KMEANS_arma

tryCatch function to prevent armadillo errors in KMEANS_arma

tryCatch_optimal_clust_GMM

tryCatch function to prevent armadillo errors in GMM_arma_AIC_BIC

Gaussian mixture models, k-means, mini-batch-kmeans, k-medoids and affinity propagation clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of 'RcppArmadillo' to speed up the computationally intensive parts of the functions. For more information, see (i) "Clustering in an Object-Oriented Environment" by Anja Struyf, Mia Hubert, Peter Rousseeuw (1997), Journal of Statistical Software, <doi:10.18637/jss.v001.i04>; (ii) "Web-scale k-means clustering" by D. Sculley (2010), ACM Digital Library, <doi:10.1145/1772690.1772862>; (iii) "Armadillo: a template-based C++ library for linear algebra" by Sanderson et al (2016), The Journal of Open Source Software, <doi:10.21105/joss.00026>; (iv) "Clustering by Passing Messages Between Data Points" by Brendan J. Frey and Delbert Dueck, Science 16 Feb 2007: Vol. 315, Issue 5814, pp. 972-976, <doi:10.1126/science.1136800>.

  • Maintainer: Lampros Mouselimis
  • License: GPL-3
  • Last published: 2024-06-18