external_validation function

external clustering validation

external clustering validation

external_validation( true_labels, clusters, method = "adjusted_rand_index", summary_stats = FALSE )

Arguments

  • true_labels: a numeric vector of length equal to the length of the clusters vector
  • clusters: a numeric vector ( the result of a clustering method ) of length equal to the length of the true_labels
  • method: one of rand_index, adjusted_rand_index, jaccard_index, fowlkes_Mallows_index, mirkin_metric, purity, entropy, nmi (normalized mutual information), var_info (variation of information), and nvi (normalized variation of information)
  • summary_stats: besides the available methods the summary_stats parameter prints also the specificity, sensitivity, precision, recall and F-measure of the clusters

Returns

if summary_stats is FALSE the function returns a float number, otherwise it returns also a summary statistics table

Details

This function uses external validation methods to evaluate the clustering results

Examples

data(dietary_survey_IBS) dat = dietary_survey_IBS[, -ncol(dietary_survey_IBS)] X = center_scale(dat) km = KMeans_rcpp(X, clusters = 2, num_init = 5, max_iters = 100, initializer = 'kmeans++') res = external_validation(dietary_survey_IBS$class, km$clusters, method = "adjusted_rand_index")

Author(s)

Lampros Mouselimis

  • Maintainer: Lampros Mouselimis
  • License: GPL-3
  • Last published: 2024-06-18