CoNI0.1.0 package

Correlation Guided Network Integration (CoNI)

Compare_VertexClasses_sharedEdgeFeatures

Table VertexClass pairs of shared Edge Features

CoNI

Correlation guided Network Integration

countClassPerEdgeFeature

Number lipid features per class

create_edgeFBarplot

Vertex-class pairs profile of one shared edge feature

create_GlobalBarplot

Vertex-class pairs profile of shared features

create_stackedGlobalBarplot_perTreatment

Stacked Global Barplot (One treatment)

createBipartiteGraph

Bipartite Network

createBipartiteTable

Bipartite Table

delIntFiles

Delete intermediary files

do_objectsExist

Check if files exist

getstackedGlobalBarplot_and_Grid

Stacked Global Barplot Side-by-side (two treatments)

getvertexes_edgeFeature

Get vertexes for edge feature

getVertexsPerEdgeFeature

Vertex Class profile per edge feature (one treatment)

find_localControllingFeatures

Find local controlling features

flattenCorrMatrix

Flatten

generate_network

Create network

get_lowvarFeatures

Low variance features

getcolor

Get class rgb color

assign_colorsAnnotation

Assing Colors to Class

barplot_VertexsPerEdgeFeature

Number Vertex features per class for every shared edge feature

check_outputDir

Output directory

check_previous

Check previous files

checkInputParameters

Check input parameters

chunk2

Split function

compare_sampleNames

Compare sample names

Compare_Triplets

Compare triplets

NetStats

Network Statistics

obtain_groupcolors

Get colors

plotPcorvsCor

Correlation vs Partial correlation

sig_correlation2

Pairwise correlations

sig_correlation2Dfs

Significant correlations 2 Df

split_df

Split dataset

tableLCFs_VFs

Table local controlling edge features and vertex pairs

top_n_LF_byMagnitude

Linker Features by magnitude of effect

writeTable

Write table

getVertexsPerEdgeFeature_and_Grid

Vertex-Class profile per edge feature Side-by-Side (two treatments)

labels2colors_2

Labels to colors

merge_outpuSplitFiles

Merge Files.

Integrates two numerical omics data sets from the same samples using partial correlations. The output can be represented as a network, bipartite graph or a hypergraph structure. The method used in the package refers to Klaus et al (2021) <doi:10.1016/j.molmet.2021.101295>.

  • Maintainer: José Manuel Monroy Kuhn
  • License: GPL-3
  • Last published: 2021-09-30