CondCopulas0.2.0 package

Estimation and Inference for Conditional Copula Models

bCond.estParamCopula

Estimation of the conditional parameters of a parametric conditional c...

bCond.pobs

Computing the pseudo-observations in case of discrete conditioning eve...

bCond.simpA.CKT

Function for testing the simplifying assumption with data-driven box-t...

bCond.simpA.param

Test of the assumption that a conditional copulas does not vary throug...

bCond.treeCKT

Construct a binary tree for the modeling the conditional Kendall's tau

CKT.estimate

Estimation of conditional Kendall's tau between two variables X1 and X...

CKT.fit.GLM

Estimation of conditional Kendall's taus by penalized GLM

CKT.fit.nNet

Predict the values of conditional Kendall's tau using Model Averaging ...

CKT.fit.nNets

Estimation of conditional Kendall's taus by model averaging of neural ...

CKT.fit.randomForest

Fit a Random Forest that can be used for the estimation of conditional...

CKT.fit.tree

Estimation of conditional Kendall's taus using a classification tree

CKT.hCV.l1out

Choose the bandwidth for kernel estimation of conditional Kendall's ta...

CKT.kendallReg.fit

Fit Kendall's regression, a GLM-type model for conditional Kendall's t...

CKT.KendallReg.LambdaCV

Kendall's regression: choice of the penalization parameter by K-folds ...

CKT.kernel

Estimation of conditional Kendall's tau using kernel smoothing

CKT.predict.kNN

Prediction of conditional Kendall's tau using nearest neighbors

CKTmatrix.kernel

Estimate the conditional Kendall's tau matrix at different conditionin...

computeKernelMatrix

Computing the kernel matrix

computeMatrixSignPairs

Compute the matrix of signs of pairs

conv_treeCKT

Converting to matrix of indicators / matrix of conditional Kendall's t...

datasetPairs

Construct a dataset of pairs of observations for the estimation of con...

estimateCondCDF_matrix

Compute kernel-based conditional marginal (univariate) cdfs

estimateCondCDF_vec

Compute kernel-based conditional marginal (univariate) cdfs

estimateCondQuantiles

Compute kernel-based conditional quantiles

estimateNPCondCopula

Compute a kernel-based estimator of the conditional copula

estimateParCondCopula

Estimation of parametric conditional copulas

measures_nonsimplifyingness_NP

Compute a measure of non-simplifyingness based on non-parametric estim...

plot.estimated_CKT_kernel

Methods for class estimated_CKT_kernel

se

Standard Error of Model Coefficients

simpA.kendallReg

Test of the simplifying assumption using the constancy of conditional ...

simpA.NP

Nonparametric testing of the simplifying assumption

simpA.param

Semiparametric testing of the simplifying assumption

Provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>), and measures of non-simplifyingness (proposed in Derumigny (2025) <doi:10.48550/arXiv.2504.07704>).

  • Maintainer: Alexis Derumigny
  • License: GPL-3
  • Last published: 2025-11-24