Create a BOWL Object
.newBOWLStep( moPropen, fSet, data, response, txName, lambdas, cvFolds, kernel, surrogate, suppress, guess, prodPi, index, ... )
moPropen
: model object for propensityfSet
: function specifying subsets or NULLdata
: data.frame of covariates and txresponse
: vector of responsestxName
: character indicating tx column in datalambdas
: vector of tuning parameterscvFolds
: number of cross-validation folds or NULLkernel
: Kernel objectsurrogate
: Surrogate objectguess
: vector of starting value for regime parameterseprodPi
: vector of previous step propensity weightsindex
: vector indicating previous compliance with regime...
: additional inputs sent to optimization methodBOWLBasic object
Useful links