newLearning function

Complete a Learning Analysis

Complete a Learning Analysis

Performs a weighted learning analysis.

.newLearning(fSet, kernel, ...) ## S4 method for signature '`NULL`,Kernel' .newLearning( fSet, kernel, ..., moPropen, moMain, moCont, data, response, txName, lambdas, cvFolds, iter, surrogate, suppress, guess, createObj, prodPi = 1, index = NULL ) ## S4 method for signature '`function`,Kernel' .newLearning( fSet, kernel, ..., moPropen, moMain, moCont, data, response, txName, lambdas, cvFolds, iter, surrogate, suppress, guess, createObj, prodPi = 1, index = NULL ) ## S4 method for signature '`function`,SubsetList' .newLearning( fSet, kernel, moPropen, moMain, moCont, data, response, txName, lambdas, cvFolds, iter, surrogate, suppress, guess, createObj, prodPi = 1, index = NULL, ... )

Arguments

  • fSet: NULL or function defining subset rules
  • kernel: Kernel object or SubsetList
  • ...: Additional inputs for optimization
  • moPropen: modelObj for propensity model
  • moMain: modelObj for main effects of outcome model
  • moCont: modelObj for contrasts of outcome model
  • data: data.frame of covariates
  • response: Vector of responses
  • txName: Tx variable column header in data
  • lambdas: Tuning parameter(s)
  • cvFolds: Number of cross-validation folds
  • iter: Maximum number of iterations for outcome regression
  • surrogate: Surrogate object
  • suppress: T/F indicating if prints to screen are executed
  • guess: optional numeric vector providing starting values for optimization methods
  • createObj: A function name defining the method object for a specific learning algorithm
  • prodPi: A vector of propensity weights
  • index: The subset of individuals to be included in learning

Returns

A Learning object

  • Maintainer: Shannon T. Holloway
  • License: GPL-2
  • Last published: 2023-11-24

Useful links