Complete a Learning Analysis
Performs a weighted learning analysis.
.newLearning(fSet, kernel, ...) ## S4 method for signature '`NULL`,Kernel' .newLearning( fSet, kernel, ..., moPropen, moMain, moCont, data, response, txName, lambdas, cvFolds, iter, surrogate, suppress, guess, createObj, prodPi = 1, index = NULL ) ## S4 method for signature '`function`,Kernel' .newLearning( fSet, kernel, ..., moPropen, moMain, moCont, data, response, txName, lambdas, cvFolds, iter, surrogate, suppress, guess, createObj, prodPi = 1, index = NULL ) ## S4 method for signature '`function`,SubsetList' .newLearning( fSet, kernel, moPropen, moMain, moCont, data, response, txName, lambdas, cvFolds, iter, surrogate, suppress, guess, createObj, prodPi = 1, index = NULL, ... )
fSet
: NULL or function defining subset ruleskernel
: Kernel object or SubsetList...
: Additional inputs for optimizationmoPropen
: modelObj for propensity modelmoMain
: modelObj for main effects of outcome modelmoCont
: modelObj for contrasts of outcome modeldata
: data.frame of covariatesresponse
: Vector of responsestxName
: Tx variable column header in datalambdas
: Tuning parameter(s)cvFolds
: Number of cross-validation foldsiter
: Maximum number of iterations for outcome regressionsurrogate
: Surrogate objectsuppress
: T/F indicating if prints to screen are executedguess
: optional numeric vector providing starting values for optimization methodscreateObj
: A function name defining the method object for a specific learning algorithmprodPi
: A vector of propensity weightsindex
: The subset of individuals to be included in learningA Learning
object
Useful links