newRWL-methods function

Complete a Residual Weighted Learning Analysis

Complete a Residual Weighted Learning Analysis

## S4 method for signature 'Kernel' .newRWL( moPropen, moMain, responseType, data, response, txName, lambdas, cvFolds, surrogate, guess, kernel, fSet, suppress, ... )

Arguments

  • moPropen: modelObj for propensity modeling
  • moMain: modelObj for main effects
  • responseType: Character indicating type of response
  • data: data.frame of covariates
  • response: vector of responses
  • txName: treatment variable column header in data
  • lambdas: tuning parameter(s)
  • cvFolds: number of cross-validation folds
  • surrogate: Surrogate object
  • guess: optional numeric vector providing starting values for optimization methods
  • kernel: Kernel object
  • fSet: Function or NULL defining subsets
  • suppress: T/F indicating if prints to screen are executed
  • ...: Additional inputs for optimization

Returns

An RWL object

  • Maintainer: Shannon T. Holloway
  • License: GPL-2
  • Last published: 2023-11-24

Useful links