Complete a Residual Weighted Learning Analysis
## S4 method for signature 'Kernel' .newRWL( moPropen, moMain, responseType, data, response, txName, lambdas, cvFolds, surrogate, guess, kernel, fSet, suppress, ... )
moPropen
: modelObj for propensity modelingmoMain
: modelObj for main effectsresponseType
: Character indicating type of responsedata
: data.frame of covariatesresponse
: vector of responsestxName
: treatment variable column header in datalambdas
: tuning parameter(s)cvFolds
: number of cross-validation foldssurrogate
: Surrogate objectguess
: optional numeric vector providing starting values for optimization methodskernel
: Kernel objectfSet
: Function or NULL defining subsetssuppress
: T/F indicating if prints to screen are executed...
: Additional inputs for optimizationAn RWL object
Useful links