FlexReg1.3.0 package

Regression Models for Bounded Continuous and Discrete Responses

convergence.diag

Convergence diagnostics

convergence.plot

Convergence plots

curve.density

Draw density plots

dBeta

Probability density function of the beta distribution

dBetaBin

Probability mass function of the beta-binomial distribution

dFB

Probability density function of the flexible beta distribution

dFBB

Probability mass function of the flexible beta-binomial distribution

dVIB

Probability density function of the variance-inflated beta distributio...

extract.pars

extract.pars

FlexReg-package

The `FlexReg' package.

flexreg

Flexible Regression Models for Bounded Continuous Responses

flexreg_binom

Flexible Regression Models for Bounded Discrete Responses

mu.chain.nd

mu.chain.nd

newdata.adjust

newdata.adjust

phi.chain.nd

phi.chain.nd

plot.flexreg

Plot Method for flexreg Objects

plot.flexreg_postpred

Plot Method for flexreg_postpred objects

posterior_predict.flexreg

Posterior Predictive Method for flexreg objects

posterior_predict

posterior_predict

predict.flexreg

Predict Method for flexreg Objects

predict_lambda.chain

predict_lambda.chain

predict_link

predict_link

predict_mu.chain

predict_mu.chain

predict_over

predict_over

predict_precision

predict_precision

predict_q.chain

predict_q.chain

predict_response

predict_response

predict_variance

predict_variance

print.flexreg

Print Methods for flexreg Objects

q0.chain.nd

q0.chain.nd

q01.chain.nd

q01.chain.nd

q1.chain.nd

q1.chain.nd

R2_bayes

Bayesian R-squared for flexreg Objects

rate_plot

rate_plot

rBeta

Random generator from the beta distribution

rBetaBin

Random generator from the beta-binomial distribution

residuals.flexreg

Residuals Method for flexreg Objects

rFB

Random generator from the flexible beta distribution

rFBB

Random generator from the flexible beta-binomial distribution

rVIB

Random generation from the variance-inflated beta distribution

summary.flexreg

Methods for flexreg Objects

summary.flexreg_postpred

Summary Method for flexreg_postpred objects

theta.chain.nd

theta.chain.nd

var.fun

var.fun

WAIC

WAIC and LOO

Functions to fit regression models for bounded continuous and discrete responses. In case of bounded continuous responses (e.g., proportions and rates), available models are the flexible beta (Migliorati, S., Di Brisco, A. M., Ongaro, A. (2018) <doi:10.1214/17-BA1079>), the variance-inflated beta (Di Brisco, A. M., Migliorati, S., Ongaro, A. (2020) <doi:10.1177/1471082X18821213>), the beta (Ferrari, S.L.P., Cribari-Neto, F. (2004) <doi:10.1080/0266476042000214501>), and their augmented versions to handle the presence of zero/one values (Di Brisco, A. M., Migliorati, S. (2020) <doi:10.1002/sim.8406>) are implemented. In case of bounded discrete responses (e.g., bounded counts, such as the number of successes in n trials), available models are the flexible beta-binomial (Ascari, R., Migliorati, S. (2021) <doi:10.1002/sim.9005>), the beta-binomial, and the binomial are implemented. Inference is dealt with a Bayesian approach based on the Hamiltonian Monte Carlo (HMC) algorithm (Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2014) <doi:10.1201/b16018>). Besides, functions to compute residuals, posterior predictives, goodness of fit measures, convergence diagnostics, and graphical representations are provided.

  • Maintainer: Roberto Ascari
  • License: GPL (>= 2)
  • Last published: 2023-09-29