Probability density function of the beta distribution
Probability density function of the beta distribution
The function computes the probability density function of the beta distribution with a mean-precision parameterization. It can also compute the probability density function of the augmented beta distribution by assigning positive probabilities to zero and/or one values and a (continuous) beta density to the interval (0,1).
dBeta(x, mu, phi, q0 =NULL, q1 =NULL)
Arguments
x: a vector of quantiles.
mu: the mean parameter. It must lie in (0, 1).
phi: the precision parameter. It must be a real positive value.
q0: the probability of augmentation in zero. It must lie in (0, 1). In case of no augmentation, it is NULL (default).
q1: the probability of augmentation in one. It must lie in (0, 1). In case of no augmentation, it is NULL (default).
Returns
A vector with the same length as x.
Details
The beta distribution has density
fB(x;μ,ϕ)=Γ(μϕ)Γ((1−μ)ϕ)Γ(ϕ)xμϕ−1(1−x)(1−μ)ϕ−1
for 0<x<1, where 0<μ<1 identifies the mean and ϕ>0 is the precision parameter.
The augmented beta distribution has density
q0, if x=0
q1, if x=1
(1−q0−q1)fB(x;μ,ϕ), if 0\<x\<1
where 0<q0<1 identifies the augmentation in zero, 0<q1<1 identifies the augmentation in one, and q0+q1<1.
Examples
dBeta(x = c(.5,.7,.8), mu =.3, phi =20)dBeta(x = c(.5,.7,.8), mu =.3, phi =20, q0 =.2)dBeta(x = c(.5,.7,.8), mu =.3, phi =20, q0 =.2, q1=.1)
References
Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions. Journal of Applied Statistics, 31 (7), 799--815. doi:10.1080/0266476042000214501