GET1.0-3 package

Global Envelopes

GET-package

Global Envelopes

GET.composite

Adjusted global envelope tests

GET.distrequal

Graphical n sample test of correspondence of distribution functions

GET.distrindep

Test of independence of two general distributions

GET.localcor

The test of local correlations

as.curve_set

Convert an envelope or fdata object to a curve_set object

central_region

Central region / Global envelope

combined_scaled_MAD_envelope_test

Combined global scaled maximum absolute difference (MAD) envelope test...

create_image_set

Create a curve set of images

crop_curves

Crop the curves

curve_set

Create a curve_set object

deviation_test

Deviation test

fBoxplot

Functional boxplot

fclustering

Functional clustering

fdr_envelope

The FDR envelope

forder

Functional ordering

frank.fanova

Rank envelope F-test

frank.flm

F rank functional GLM

geom_central_region

Central region plot

GeomCentralRegion

Central region plot

GET.spatialF

Testing global and local dependence of point patterns on covariates

GET.variogram

Variogram and residual variogram with global envelopes

global_envelope_test

Global envelope test

global_rq

Global quantile regression

graph.fanova

One-way graphical functional ANOVA

graph.flm

Graphical functional GLM

is.curve_set

Check class.

partial_forder

Functional ordering in parts

plot.combined_fboxplot

Plot method for the class 'combined_fboxplot'

residual

Residual form of the functions

plot.combined_global_envelope

Plot method for the class 'combined_global_envelope'

plot.combined_global_envelope2d

Plotting function for combined 2d global envelopes

plot.curve_set

Plot method for the class 'curve_set'

plot.curve_set2d

Plot method for the class 'curve_set2d'

plot.fboxplot

Plot method for the class 'fboxplot'

plot.fclust

Plot method for the class 'fclust'

subset.curve_set

Subsetting curve sets

plot.global_envelope

Plot method for the class 'global_envelope'

plot.global_envelope2d

Plotting function for 2d global envelopes

print.combined_fboxplot

Print method for the class 'combined_fboxplot'

print.combined_global_envelope

Print method for the class 'combined_global_envelope'

print.curve_set

Print method for the class 'curve_set'

print.deviation_test

Print method for the class 'deviation_test'

print.fboxplot

Print method for the class 'fboxplot'

print.fclust

Print method for the class 'fclust'

print.fdr_envelope

Print method for the class 'fdr_envelope'

print.GET_contingency

Print method for the class 'GET_contingency'

print.global_envelope

Print method for the class 'global_envelope'

qdir_envelope

Global scaled maximum absolute difference (MAD) envelope tests

rank_envelope

The rank envelope test

Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and Mrkvička (2023) <doi:10.48550/arXiv.1911.06583>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, Mrkvička and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, Mrkvička et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, Mrkvička et al. (2017) <doi:10.1007/s11222-016-9683-9>, Mrkvička et al. (2020) <doi:10.14736/kyb-2020-3-0432>, Mrkvička et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, Mrkvička et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, Dvořák and Mrkvička (2022) <doi:10.1007/s00180-021-01134-y>, Mrkvička et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.48550/arXiv.2403.01838>.

  • Maintainer: Mari Myllymäki
  • License: GPL-3
  • Last published: 2024-08-19