GET.spatialF function

Testing global and local dependence of point patterns on covariates

Testing global and local dependence of point patterns on covariates

Compute the spatial F- and S-statistics and perform the one-stage global envelope tests proposed by Myllymäki et al. (2020).

GET.spatialF( X, formula.full, formula.reduced, fitfun, covariates, nsim, bw = spatstat.explore::bw.scott(X), bw.S = bw, dimyx = NULL, ... )

Arguments

  • X: A ppp object of spatstat representing the observed point pattern.
  • formula.full: A formula for the trend of the full model.
  • formula.reduced: A formula for the trend of the reduced model that is a submodel of the full model.
  • fitfun: A function of a point pattern, model formula and covariates, giving a fitted model object that can be used with simulate.
  • covariates: A list of covariates.
  • nsim: The number of simulations.
  • bw: The bandwidth for smoothed residuals.
  • bw.S: The radius for the local S(u)-statistic.
  • dimyx: Pixel array dimensions for smoothed residuals. See as.mask of spatstat.
  • ...: Additional arguments to be passed to global_envelope_test.

Returns

list with three components

  • F = the global envelope test based on the F(u) statistic
  • S = the global envelope test based on the S(u) statistic
  • coef = the coefficients of the full model given by fitfun

Examples

if(require("spatstat.model", quietly=TRUE)) { # Example of tropical rain forest trees data("bei") fullmodel <- ~ grad reducedmodel <- ~ 1 fitppm <- function(X, model, covariates) { ppm(X, model, covariates=covariates) } nsim <- 19 # Increase nsim for serious analysis! res <- GET.spatialF(bei, fullmodel, reducedmodel, fitppm, bei.extra, nsim) plot(res$F) plot(res$S) # Example of forest fires data("clmfires") # Choose the locations of the lightnings in years 2004-2007: pp.lightning <- unmark(subset(clmfires, cause == "lightning" & date >= "2004-01-01" & date < "2008-01-01")) covariates <- clmfires.extra$clmcov100 covariates$forest <- covariates$landuse == "conifer" | covariates$landuse == "denseforest" | covariates$landuse == "mixedforest" fullmodel <- ~ elevation + landuse reducedmodel <- ~ landuse nsim <- 19 # Increase nsim for serious analysis! res <- GET.spatialF(pp.lightning, fullmodel, reducedmodel, fitppm, covariates, nsim) plot(res$F) plot(res$S) # Examples of the fitfun functions for clustered and regular processes # fitfun for the log Gaussian Cox Process with exponential covariance function fitLGCPexp <- function(X, model, covariates) { kppm(X, model, clusters="LGCP", model="exponential", covariates=covariates) } # fitfun for the hardcore process with hardcore radius 0.01 fitHardcore <- function(X, model, covariates) { ppm(X, model, interaction=Hardcore(0.01), covariates=covariates) } }

References

Myllymäki, M., Kuronen, M. and Mrkvička, T. (2020). Testing global and local dependence of point patterns on covariates in parametric models. Spatial Statistics 42, 100436. doi: 10.1016/j.spasta.2020.100436

  • Maintainer: Mari Myllymäki
  • License: GPL-3
  • Last published: 2025-03-30