X: A ppp object of spatstat representing the observed point pattern.
formula.full: A formula for the trend of the full model.
formula.reduced: A formula for the trend of the reduced model that is a submodel of the full model.
fitfun: A function of a point pattern, model formula and covariates, giving a fitted model object that can be used with simulate.
covariates: A list of covariates.
nsim: The number of simulations.
bw: The bandwidth for smoothed residuals.
bw.S: The radius for the local S(u)-statistic.
dimyx: Pixel array dimensions for smoothed residuals. See as.mask of spatstat.
...: Additional arguments to be passed to global_envelope_test.
Returns
list with three components
F = the global envelope test based on the F(u) statistic
S = the global envelope test based on the S(u) statistic
coef = the coefficients of the full model given by fitfun
Examples
if(require("spatstat.model", quietly=TRUE)){# Example of tropical rain forest trees data("bei") fullmodel <-~ grad
reducedmodel <-~1 fitppm <-function(X, model, covariates){ ppm(X, model, covariates=covariates)} nsim <-19# Increase nsim for serious analysis! res <- GET.spatialF(bei, fullmodel, reducedmodel, fitppm, bei.extra, nsim) plot(res$F) plot(res$S)# Example of forest fires data("clmfires")# Choose the locations of the lightnings in years 2004-2007: pp.lightning <- unmark(subset(clmfires, cause =="lightning"& date >="2004-01-01"& date <"2008-01-01")) covariates <- clmfires.extra$clmcov100
covariates$forest <- covariates$landuse =="conifer"| covariates$landuse =="denseforest"| covariates$landuse =="mixedforest" fullmodel <-~ elevation + landuse
reducedmodel <-~ landuse
nsim <-19# Increase nsim for serious analysis! res <- GET.spatialF(pp.lightning, fullmodel, reducedmodel, fitppm, covariates, nsim) plot(res$F) plot(res$S)# Examples of the fitfun functions for clustered and regular processes# fitfun for the log Gaussian Cox Process with exponential covariance function fitLGCPexp <-function(X, model, covariates){ kppm(X, model, clusters="LGCP", model="exponential", covariates=covariates)}# fitfun for the hardcore process with hardcore radius 0.01 fitHardcore <-function(X, model, covariates){ ppm(X, model, interaction=Hardcore(0.01), covariates=covariates)}}
References
Myllymäki, M., Kuronen, M. and Mrkvička, T. (2020). Testing global and local dependence of point patterns on covariates in parametric models. Spatial Statistics 42, 100436. doi: 10.1016/j.spasta.2020.100436