bivariate: Logical; if TRUE then the data come froma a bivariate random field. Otherwise from a univariate random field.
coordx: A numeric (dx2)-matrix or (dx3)-matrix Coordinates on a sphere for a fixed radius radius
are passed in lon/lat format expressed in decimal degrees.
coordy: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.
coordz: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.
coordt: A numeric vector assigning 1-dimension of temporal coordinates. Optional argument, the default is NULL
then a spatial random field is expected.
coordx_dyn: A list of m numeric (dx2)-matrices containing dynamical (in time) spatial coordinates. Optional argument, the default is NULL
data: A numeric vector or a (nxd)-matrix or (dxdxn)-matrix of observations.
flagcorr: A numeric vector of binary values denoting which paramerters of the correlation function will be estimated.
flagnuis: A numeric vector of binary values denoting which nuisance paramerters will be estimated.
fixed: A numeric vector of parameters that will be considered as known values.
grid: Logical; if FALSE (the default) the data are interpreted as a vector or a (nxd)-matrix, instead if TRUE then (dxdxn)-matrix is considered.
lower: An optional named list giving the values for the lower bound of the space parameter when the optimizer is L-BFGS-B or nlminb or optimize. The names of the list must be the same of the names in the start list.
model: Numeric; the id value of the density associated to the likelihood objects.
n: Numeric; number of trials in a binomial random fields.
namescorr: String; the names of the correlation parameters.
namesnuis: String; the names of the nuisance parameters.
namesparam: String; the names of the parameters to be maximised.
numparam: Numeric; the number of parameters to be maximised.
optimizer: String; the optimization algorithm (see optim for details). Nelder-Mead is the default. Other possible choices are nlm, BFGSL-BFGS-B and nlminb. In these last two cases upper and lower bounds can be passed by the user. In the case of one-dimensional optimization, the function optimize is used.
onlyvar: Logical; if TRUE (and varest is TRUE) only the variance covariance matrix is computed without optimizing. FALSE is the default.
parallel: Logical; if TRUE optmization is performed using optimParallel using the maximum number of cores, when optimizer is L-BFGS-B.FALSE is the default.
param: A numeric vector of parameters values.
spacetime: Logical; if TRUE the random field is spatial-temporal otherwise is a spatial field.
type: String; the type of the likelihood objects. If Pairwise (the default) then the marginal composite likelihood is formed by pairwise marginal likelihoods.
upper: An optional named list giving the values for the upper bound of the space parameter when the optimizer is or L-BFGS-B or nlminb or optimize. The names of the list must be the same of the names in the start list.
namesupper: String; the names of the upper limit of the parameters.
varest: Logical; if TRUE the estimate variances and standard errors are returned. FALSE is the default.
ns: Numeric; Number of (dynamical) temporal instants.
X: Numeric; Matrix of space-time covariates in the linear mean specification.
sensitivity: Logical; if TRUE then the sensitivy matrix is computed
copula: String; the type of copula. It can be "Clayton" or "Gaussian"