GeoModels2.0.8 package

Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis

Anomalies

Annual precipitation anomalies in U.S.

CheckBiv

Checking Bivariate covariance models

CheckDistance

Checking Distance

CheckSph

Checking if a covariance is valid only on the sphere

CheckST

Checking SpaceTime covariance models

CkCorrModel

Checking Correlation Model

CkInput

Checking Input

CkLikelihood

Checking Composite-likelihood Type

CkModel

Checking Random Field type

CkType

Checking Likelihood Objects

CkVarType

Checking Variance Estimates Type

CompIndLik2

Optimizes the Composite indipendence log-likelihood

CompLik

Optimizes the Composite log-likelihood

CompLik2

Optimizes the Composite log-likelihood

CorrelationPar

Lists the Parameters of a Correlation Model

CorrParam

Lists the Parameters of a Correlation Model

GeoAniso

Spatial Anisotropy correction

GeoCorrFct_Cop

Spatial and Spatio-temporal correlation or covariance of (non) Gaussia...

GeoCorrFct

Spatial and Spatio-temporal correlation or covariance of (non) Gaussia...

GeoCovariogram

Computes the fitted variogram model.

GeoCovDisplay

Image plot displaying the pattern of the sparsness of a covariance mat...

GeoCovmatrix

Spatial and Spatio-temporal Covariance Matrix of (non) Gaussian random...

GeoCV

n-fold kriging Cross-validation

GeoDosocores

Computation of drop-one predictive scores

GeoFit

Max-Likelihood-Based Fitting of Gaussian and non Gaussian random field...

GeoFit2

Max-Likelihood-Based Fitting of Gaussian and non Gaussian RFs.

GeoKrig

Spatial (bivariate) and spatio temporal optimal linear prediction for ...

GeoKrigloc

Spatial (bivariate) and spatio temporal optimal linear local predictio...

GeoNA

Deleting NA values (missing values) from a spatial or spatio-temporal ...

GeoNeighborhood

Spatio (temporal) neighborhood selection for local kriging.

GeoNeighbSelect

A brute force algorithm for spatial or spatiotemoral optimal neighboor...

GeoNeighIndex

Spatial or spatiotemporal near neighbour indices.

GeoNosymindices

GeoNosymindices.

GeoOutlier

Spatio (temporal) outliers detection

GeoPit

Probability integral or normal score tranformation

GeoQQ

Quantile-quantile plot

GeoResiduals

Computes fitted covariance and/or variogram

GeoScatterplot

h-scatterplot for space and space-time data.

GeoScores

Computation of predictive scores

GeoSim

Simulation of Gaussian and non Gaussian Random Fields.

GeoSimapprox

Fast simulation of Gaussian and non Gaussian Random Fields.

GeoSimCopula

Simulation of Gaussian and non Gaussian Random Fields using copula.

GeoTests

Statistical Hypothesis Tests for Nested Models

GeoVarestbootstrap

Update a GeoFit object using parametric bootstrap for std error esti...

GeoVariogram

Empirical semi-variogram estimation

GeoWls

WLS of Random Fields

Lik

Optimizes the Log Likelihood

MatDecomp

Matrix decomposition

Matrixfun

Square root, inverse and log determinant of a (semi)positive definite ...

NuisParam.rd

Lists the Nuisance Parameters of a Random Field

NuisParam2

Internal function handling Nuisance Parameters of a Random Field

plot.GeoCorrFct

Plot Spatial and Spatio-temporal correlation or covariance of (non) Ga...

plot.GeoVariogram

Plot empirical spatial, spatio-temporal and spatial bivariate semi-Var...

SimCE

Circulant embeeding simulation

sp2Geo

Extracting information from an sp or spacetime object

StartParam

Initializes the Parameters for Estimation Procedures

WlsStart

Computes Starting Values based on Weighted Least Squares

Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.

  • Maintainer: Moreno Bevilacqua
  • License: GPL (>= 3)
  • Last published: 2024-11-10