Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields
Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields
The function computes the correlations of a spatial (or spatio-temporal or bivariate spatial) Gaussian or non Gaussian randomm field for a given correlation model and a set of spatial (temporal) distances.
UTF-8
corrmodel: String; the name of a correlation model, for the description see GeoCovmatrix.
model: String; the type of RF. See GeoFit.
distance: String; the name of the spatial distance. The default is Eucl, the euclidean distance. See GeoFit.
param: A list of parameter values required for the covariance model.
radius: Numeric; a value indicating the radius of the sphere when using covariance models valid using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371)
n: Numeric; the number of trials in a (negative) binomial random fields. Default is 1.
covariance: Logic; if TRUE then the covariance is returned. Default is FALSE
variogram: Logic; if FALSE then the covariance/correlation is returned. Otherwise the associated semivariogram is returned
Returns
Returns correlations or covariances values associated to a given parametric spatial and temporal correlation models.
library(GeoModels)###################################################################### Example 1. Covariance of a Gaussian random field with underlying ### Matern correlation model with nugget################################################################### Define the spatial distances#x = seq(0,1,0.002)# Correlation Parameters for Matern model #CorrParam("Matern")#NuisParam("Gaussian")# Matern Parameters #param=list(sill=2,smooth=0.5,scale=0.2/3,nugget=0.2,mean=0)#cc= GeoCorrFct(x=x, corrmodel="Matern", covariance=TRUE,# param=param,model="Gaussian")#plot(cc,ylab="Corr",lwd=2,main="Matern correlation",type="l")###################################################################### Example 2. Covariance of a Gaussian random field with underlying ### Generalized Wendland-Matern correlation model###################################################################CorrParam("GenWend_Matern")#NuisParam("Gaussian")# GenWend Matern Parameters #param=list(sill=2,smooth=1,scale=0.1,nugget=0,power2=1/4,mean=0)#cc= GeoCorrFct(x=x, corrmodel="GenWend_Matern", param=param,model="Gaussian",covariance=FALSE)#plot(cc,ylab="Cov",lwd=2,,main="GenWend covariance",type="l")###################################################################### Example 3. Semivariogram of a Tukeyh random field with underlying ### Generalized Wendland correlation model###################################################################CorrParam("GenWend")#NuisParam("Tukeyh")#x = seq(0,1,0.005)#param=list(sill=1,smooth=1,scale=0.5,nugget=0,power2=5,tail=0.1,mean=0)#cc= GeoCorrFct(x=x, corrmodel="GenWend", param=param,model="Tukeyh",variogram=TRUE)#plot(cc,ylab="Corr",lwd=2,main="Tukey semivariogram",type="l")###################################################################### Example 4. Semi-Variogram of a LoggGaussian random field with underlying ### Kummer correlation model###################################################################CorrParam("Kummer")#NuisParam("LogGaussian")# GenWend Matern Parameters #param=list(smooth=1,sill=0.5,scale=0.1,nugget=0,power2=1,mean=0)#cc= GeoCorrFct(x=x, corrmodel="Kummer", param=param,model="LogGaussian",# ,covariance=TRUE,variogram=TRUE)#plot(cc,ylab="Semivario",lwd=2,# main="LogGaussian semivariogram",type="l")###################################################################### Example 5. Covariance of Poisson random field with underlying ### Matern correlation model###################################################################CorrParam("Matern")#NuisParam("Poisson")#x = seq(0,1,0.005)#param=list(scale=0.6/3,nugget=0,smooth=0.5,mean=2)#cc= GeoCorrFct(x=x, corrmodel="Matern", param=param,model="Poisson",covariance=TRUE)#plot(cc,ylab="Cov",lwd=2,# main="Poisson covariance",type="l")###################################################################### Example 6. Space time semivariogram of a Gaussian random field ### with separable Matern correlation model#################################################################### spatial and temporal distances #h<-seq(0,3,by=0.04)#times<-seq(0,3,by=0.04)# Correlation Parameters for the space time separable Matern model #CorrParam("Matern")#NuisParam("Gaussian")# Matern Parameters #param=list(sill=1,scale_s=0.6/3,scale_t=0.5,nugget=0,mean=0,smooth_s=1.5,smooth_t=0.5)#cc= GeoCorrFct(x=h,t=times,corrmodel="Matern_Matern", param=param,# model="Gaussian",variogram=TRUE)#plot(cc,lwd=2,type="l")###################################################################### Example 7. Correlation of a bivariate Gaussian random field ### with underlying separable bivariate Matern correlation model################################################################### Define the spatial distances#x = seq(0,1,0.005)# Correlation Parameters for the bivariate sep Matern model #CorrParam("Bi_Matern")# Matern Parameters #param=list(sill_1=1,sill_2=1,smooth_1=0.5,smooth_2=1,smooth_12=0.75,# scale_1=0.2/3, scale_2=0.2/3, scale_12=0.2/3,# mean_1=0,mean_2=0,nugget_1=0,nugget_2=0,pcol=-0.2)#cc= GeoCorrFct(x=x, corrmodel="Bi_Matern", param=param,model="Gaussian")#plot(cc,ylab="corr",lwd=2,type="l")