K: The number of simulations in the parametric bootstrap.
sparse: Logical; if TRUE then cholesky decomposition is performed using sparse matrices algorithms (spam packake).
GPU: Numeric; if NULL (the default) no OpenCL computation is performed. The user can choose the device to be used. Use DeviceInfo() function to see available devices, only double precision devices are allowed
local: Numeric; number of local work-items of the OpenCL setup
optimizer: The type of optimization algorithm (see GeoFit for details). If NULL then the optimization algorithm of the object fit is chosen.
lower: An optional named list giving the values for the lower bound of the space parameter when the optimizer is L-BFGS-B or nlminb or optimize.
upper: An optional named list giving the values for the upper bound of the space parameter when the optimizer is L-BFGS-B or nlminb or optimize.
method: String; The method of simulation. Default is cholesky. For large data set three options are TB or CE (see the GeoSimapprox) function.
alpha: Numeric; The level of the confidence interval.
L: Numeric; the number of lines in the turning band method.
parallel: Logical; if TRUE then the estimation step is parallelized
ncores: Numeric; number of cores involved in parallelization.
Details
The function update a GeoFit object estimating stderr estimation and confidence interval using parametric bootstrap.
library(GeoModels)###################################################################### Example 1. Test on the parameter### of a regression model using conditional composite likelihood##################################################################set.seed(342)model="Gaussian"# Define the spatial-coordinates of the points:NN=3500x = runif(NN,0,1)y = runif(NN,0,1)coords = cbind(x,y)# Parametersmean=1; mean1=-1.25;# regression parameters sill=1# variance# matrix covariatesX=cbind(rep(1,nrow(coords)),runif(nrow(coords)))# model correlation corrmodel="Matern"smooth=0.5;scale=0.1; nugget=0;# simulationparam=list(smooth=smooth,mean=mean,mean1=mean1, sill=sill,scale=scale,nugget=nugget)data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model, param=param,X=X)$data
I=Inffixed=list(nugget=nugget,smooth=smooth)start=list(mean=mean,mean1=mean1,scale=scale,sill=sill)lower=list(mean=-I,mean1=-I,scale=0,sill=0)upper=list(mean=I,mean1=I,scale=I,sill=I)# Maximum pairwise composite-likelihood fitting of the RF:fit = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower,upper=upper,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed)unlist(fit$param)#fit_update=GeoVarestbootstrap(fit,K=100,parallel=TRUE)#fit_update$stderr#fit_update$conf.int#fit_update$pvalues