GeoVarestbootstrap function

Update a GeoFit object using parametric bootstrap for std error estimation

Update a GeoFit object using parametric bootstrap for std error estimation

The procedure update a GeoFit object computing stderr estimation, confidence intervals and p-values using parametric bootstrap. UTF-8

GeoVarestbootstrap(fit,K=100,sparse=FALSE, GPU=NULL,local=c(1,1), optimizer=NULL, lower=NULL, upper=NULL, method="cholesky",alpha=0.95, L=1000,parallel=FALSE,ncores=NULL)

Arguments

  • fit: A fitted object obtained from the GeoFit.
  • K: The number of simulations in the parametric bootstrap.
  • sparse: Logical; if TRUE then cholesky decomposition is performed using sparse matrices algorithms (spam packake).
  • GPU: Numeric; if NULL (the default) no OpenCL computation is performed. The user can choose the device to be used. Use DeviceInfo() function to see available devices, only double precision devices are allowed
  • local: Numeric; number of local work-items of the OpenCL setup
  • optimizer: The type of optimization algorithm (see GeoFit for details). If NULL then the optimization algorithm of the object fit is chosen.
  • lower: An optional named list giving the values for the lower bound of the space parameter when the optimizer is L-BFGS-B or nlminb or optimize.
  • upper: An optional named list giving the values for the upper bound of the space parameter when the optimizer is L-BFGS-B or nlminb or optimize.
  • method: String; The method of simulation. Default is cholesky. For large data set three options are TB or CE (see the GeoSimapprox) function.
  • alpha: Numeric; The level of the confidence interval.
  • L: Numeric; the number of lines in the turning band method.
  • parallel: Logical; if TRUE then the estimation step is parallelized
  • ncores: Numeric; number of cores involved in parallelization.

Details

The function update a GeoFit object estimating stderr estimation and confidence interval using parametric bootstrap.

Returns

Returns an (updated) object of class GeoFit.

See Also

GeoFit.

Author(s)

Moreno Bevilacqua, moreno.bevilacqua89@gmail.com ,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl , https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl ,https://www.researchgate.net/profile/Christian-Caamano

Examples

library(GeoModels) ################################################################ ### ### Example 1. Test on the parameter ### of a regression model using conditional composite likelihood ### ############################################################### set.seed(342) model="Gaussian" # Define the spatial-coordinates of the points: NN=3500 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=1; mean1=-1.25; # regression parameters sill=1 # variance # matrix covariates X=cbind(rep(1,nrow(coords)),runif(nrow(coords))) # model correlation corrmodel="Matern" smooth=0.5;scale=0.1; nugget=0; # simulation param=list(smooth=smooth,mean=mean,mean1=mean1, sill=sill,scale=scale,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model, param=param,X=X)$data I=Inf fixed=list(nugget=nugget,smooth=smooth) start=list(mean=mean,mean1=mean1,scale=scale,sill=sill) lower=list(mean=-I,mean1=-I,scale=0,sill=0) upper=list(mean=I,mean1=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fit = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower,upper=upper,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fit$param) #fit_update=GeoVarestbootstrap(fit,K=100,parallel=TRUE) #fit_update$stderr #fit_update$conf.int #fit_update$pvalues
  • Maintainer: Moreno Bevilacqua
  • License: GPL (>= 3)
  • Last published: 2025-01-14