GeoSimCopula function

Simulation of Gaussian and non Gaussian Random Fields using copula.

Simulation of Gaussian and non Gaussian Random Fields using copula.

Simulation of Gaussian and some non Gaussian spatial, spatio-temporal and spatial bivariate random fields using Gaussian or Clayton copula. The function return a realization of a Random Field for a given covariance model and covariance parameters. Simulation is based on Cholesky decomposition. UTF-8

GeoSimCopula(coordx, coordy=NULL,coordz=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", GPU=NULL, grid=FALSE, local=c(1,1), method="cholesky", model='Gaussian', n=1, param, anisopars=NULL,radius=6371, sparse=FALSE, copula="Gaussian",seed=NULL, X=NULL,spobj=NULL,nrep=1)

Arguments

  • coordx: A numeric (dx2d x 2)-matrix or (dx3d x 3)-matrix Coordinates on a sphere for a fixed radius radius

    are passed in lon/lat format expressed in decimal degrees.

  • coordy: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.

  • coordz: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.

  • coordt: A numeric vector giving 1-dimension of temporal coordinates. Optional argument, the default is NULL

    then a spatial RF is expected.

  • coordx_dyn: A list of mm numeric (dx2d x 2)-matrices containing dynamical (in time) spatial coordinates. Optional argument, the default is NULL

  • corrmodel: String; the name of a correlation model, for the description see the Section Details .

  • distance: String; the name of the spatial distance. The default is Eucl, the euclidean distance. See the Section Details of GeoFit.

  • GPU: Numeric; if NULL (the default) no GPU computation is performed.

  • grid: Logical; if FALSE (the default) the data are interpreted as spatial or spatial-temporal realisations on a set of non-equispaced spatial sites (irregular grid).

  • local: Numeric; number of local work-items of the GPU

  • method: String; the type of matrix decomposition used in the simulation. Default is cholesky. The other possible choices is svd.

  • model: String; the type of RF and therefore the densities associated to the likelihood objects. Gaussian is the default, see the Section Details .

  • n: Numeric; the number of trials for binomial RFs. The number of successes in the negative Binomial RFs. Default is 11.

  • param: A list of parameter values required in the simulation procedure of RFs, see Examples .

  • anisopars: A list of two elements "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively.

  • radius: Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371)

  • sparse: Logical; if TRUE then cholesky decomposition is performed using sparse matrices algorithms (spam packake). It should be used with compactly supported covariance models.FALSE is the default.

  • copula: String; the type of copula. It can be "Clayton" or "Gaussian"

  • seed: Numeric; an integer used in set.seed function to reproduce the simulation.

  • X: Numeric; Matrix of space-time covariates.

  • spobj: An object of class sp or spacetime

  • nrep: Numeric; Numbers of indipendent replicates.

Returns

Returns an object of class GeoSimCopula. An object of class GeoSimCopula is a list containing at most the following components:

  • bivariate: Logical:TRUE if the Gaussian RF is bivariate, otherwise FALSE;

  • coordx: A dd-dimensional vector of spatial coordinates;

  • coordy: A dd-dimensional vector of spatial coordinates;

  • coordt: A tt-dimensional vector of temporal coordinates;

  • coordx_dyn: A list of dynamical (in time) spatial coordinates;

  • corrmodel: The correlation model; see GeoCovmatrix.

  • data: The vector or matrix or array of data, see GeoFit;

  • distance: The type of spatial distance;

  • method: The method of simulation

  • model: The type of RF, see GeoFit.

  • n: The number of trial for Binomial RFs;the number of successes in a negative Binomial RFs;

  • numcoord: The number of spatial coordinates;

  • numtime: The number the temporal realisations of the RF;

  • param: A list of the parameters

  • radius: The radius of the sphere if coordinates are passed in lon/lat format;

  • randseed: The seed used for the random simulation;

  • spacetime: TRUE if spatio-temporal and FALSE if spatial RF;

  • copula: The type of copula

References

Bevilacqua M., Alvarado E., Caamano C. (2024) A flexible Clayton-like spatial copula with application to bounded support data. Journal of Multivariate Analysis 201

Author(s)

Moreno Bevilacqua, moreno.bevilacqua89@gmail.com ,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl , https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl ,https://www.researchgate.net/profile/Christian-Caamano

Examples

library(GeoModels) ################################################################ ### ### Example q. Simulation of a reparametrized Beta RF ### for beta regression ### with Gaussian and Clayton Copula ### with underlying Wendland correlation. ### ############################################################### set.seed(261) NN=1400 x <- runif(NN);y <- runif(NN) coords=cbind(x,y) shape1=3 shape2=3 smooth=0 corrmodel="GenWend" min=0;max=1 X=cbind(rep(1,NN),runif(NN)) NuisParam("Beta2",num_betas=2,copula="Gaussian") CorrParam("GenWend") #### Gaussian copula param=list(smooth=smooth,power2=4, min=min,max=max, mean=0.1,mean1=0.1,scale=0.3,nugget=0,shape=5) data <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model="Beta2",param=param, copula="Gaussian",sparse=TRUE,X=X)$data quilt.plot(coords,data) #### Clayton copula NuisParam("Beta2",num_betas=2,copula="Clayton") CorrParam("GenWend") param=list(smooth=smooth,power2=4, min=min,max=max, mean=0.2,mean1=0.1,scale=0.3,nugget=0,shape=6,nu=4) data1 <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model="Beta2",param=param, copula="Clayton",sparse=TRUE,X=X)$data hist(data1,freq=FALSE) quilt.plot(coords,data1)
  • Maintainer: Moreno Bevilacqua
  • License: GPL (>= 3)
  • Last published: 2025-01-14