Simulation of Gaussian and non Gaussian Random Fields using copula.
Simulation of Gaussian and non Gaussian Random Fields using copula.
Simulation of Gaussian and some non Gaussian spatial, spatio-temporal and spatial bivariate random fields using Gaussian or Clayton copula. The function return a realization of a Random Field for a given covariance model and covariance parameters. Simulation is based on Cholesky decomposition.
UTF-8
coordx: A numeric (dx2)-matrix or (dx3)-matrix Coordinates on a sphere for a fixed radius radius
are passed in lon/lat format expressed in decimal degrees.
coordy: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.
coordz: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.
coordt: A numeric vector giving 1-dimension of temporal coordinates. Optional argument, the default is NULL
then a spatial RF is expected.
coordx_dyn: A list of m numeric (dx2)-matrices containing dynamical (in time) spatial coordinates. Optional argument, the default is NULL
corrmodel: String; the name of a correlation model, for the description see the Section Details .
distance: String; the name of the spatial distance. The default is Eucl, the euclidean distance. See the Section Details of GeoFit.
GPU: Numeric; if NULL (the default) no GPU computation is performed.
grid: Logical; if FALSE (the default) the data are interpreted as spatial or spatial-temporal realisations on a set of non-equispaced spatial sites (irregular grid).
local: Numeric; number of local work-items of the GPU
method: String; the type of matrix decomposition used in the simulation. Default is cholesky. The other possible choices is svd.
model: String; the type of RF and therefore the densities associated to the likelihood objects. Gaussian is the default, see the Section Details .
n: Numeric; the number of trials for binomial RFs. The number of successes in the negative Binomial RFs. Default is 1.
param: A list of parameter values required in the simulation procedure of RFs, see Examples .
anisopars: A list of two elements "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively.
radius: Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371)
sparse: Logical; if TRUE then cholesky decomposition is performed using sparse matrices algorithms (spam packake). It should be used with compactly supported covariance models.FALSE is the default.
copula: String; the type of copula. It can be "Clayton" or "Gaussian"
seed: Numeric; an integer used in set.seed function to reproduce the simulation.
X: Numeric; Matrix of space-time covariates.
spobj: An object of class sp or spacetime
nrep: Numeric; Numbers of indipendent replicates.
Returns
Returns an object of class GeoSimCopula. An object of class GeoSimCopula is a list containing at most the following components:
bivariate: Logical:TRUE if the Gaussian RF is bivariate, otherwise FALSE;
coordx: A d-dimensional vector of spatial coordinates;
coordy: A d-dimensional vector of spatial coordinates;
coordt: A t-dimensional vector of temporal coordinates;
coordx_dyn: A list of dynamical (in time) spatial coordinates;
corrmodel: The correlation model; see GeoCovmatrix.
data: The vector or matrix or array of data, see GeoFit;
distance: The type of spatial distance;
method: The method of simulation
model: The type of RF, see GeoFit.
n: The number of trial for Binomial RFs;the number of successes in a negative Binomial RFs;
numcoord: The number of spatial coordinates;
numtime: The number the temporal realisations of the RF;
param: A list of the parameters
radius: The radius of the sphere if coordinates are passed in lon/lat format;
randseed: The seed used for the random simulation;
spacetime: TRUE if spatio-temporal and FALSE if spatial RF;
copula: The type of copula
References
Bevilacqua M., Alvarado E., Caamano C. (2024) A flexible Clayton-like spatial copula with application to bounded support data. Journal of Multivariate Analysis 201