GeoQQ function

Quantile-quantile plot

Quantile-quantile plot

Based on a GeoFit object, the procedure plots a quantile-quantile plot or compares the fitted density with the histogram of the data. It is useful as diagnostic tool. UTF-8

GeoQQ(fit,type="Q",add=FALSE,ylim=c(0,1),breaks=10,...)

Arguments

  • fit: A GeoFit object possibly obtained from GeoResiduals.
  • type: The type of plot. If Q then a qq-plot (default) is performed. If D then a comparison between histrogram and the estimated marginal density is performed
  • add: Logical; if TRUE the the estimated density ia added over an existing one
  • ylim: Numeric; a vector of length 2 used for the ylab parameter of the histogram plot.
  • breaks: Numeric; an integer number specifyng the number of cells ofthe histogram plot if the option type=D is chosen.
  • ...: Optional parameters passed to the plot function.

Returns

Produces a plot. No values are returned.

Author(s)

Moreno Bevilacqua, moreno.bevilacqua89@gmail.com ,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl , https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl ,https://www.researchgate.net/profile/Christian-Caamano

Examples

library(GeoModels) ################## ### Example 1 ################## set.seed(21) model="Tukeyh";tail=0.1 N=400 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,tail=tail,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data start=list(mean=mean,mean1=mean1, scale=scale,tail=tail) fixed=list(nugget=nugget,sill=sill,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, fixed=fixed,neighb=4) res=GeoResiduals(fit) GeoQQ(res,type="Q") GeoQQ(res,type="D",lwd=2,ylim=c(0,0.5),breaks=20) ################## ### Example 2 ################## set.seed(21) model="Weibull";shape=1.5 N=600 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 0 # correlation parameters: corrmodel = "Matern" smooth=0.5 nugget = 0 scale = 0.2/3 param=list(mean=mean, sill=1, nugget=nugget, scale=scale,smooth=smooth, shape=shape) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model,param=param)$data start=list(mean=mean, scale=scale,shape=shape) I=Inf lower=list(mean=-I, scale=0,shape=0) upper=list(mean= I, scale=I,shape=I) I=Inf fixed=list(nugget=nugget,sill=1,smooth=smooth) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Conditional",type='Pairwise',start=start, optimizer="nlminb",lower=lower,upper=upper, fixed=fixed,neighb=3) GeoQQ(fit,type="Q") GeoQQ(fit,type="D",lwd=2,ylim=c(0,1),breaks=20)
  • Maintainer: Moreno Bevilacqua
  • License: GPL (>= 3)
  • Last published: 2025-01-14