data: A d-dimensional vector (a single spatial realisation) or a (dxd)-matrix (a single spatial realisation on regular grid) or a (txd)-matrix (a single spatial-temporal realisation) or an (dxdxt)-array (a single spatial-temporal realisation on regular grid) giving the data.
coordx: A numeric (dx2)-matrix or (dx3)-matrix Coordinates on a sphere for a fixed radius radius
are passed in lon/lat format expressed in decimal degrees.
coordy: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.
coordz: A numeric vector giving 1-dimension of spatial coordinates; Optional argument, the default is NULL.
coordt: A numeric vector giving 1-dimension of temporal coordinates; the default is NULL
then a spatial random field is expected.
coordx_dyn: A list of m numeric (dx2)-matrices containing dynamical (in time) spatial coordinates. Optional argument, the default is NULL
grid: Logical; if FALSE (the default) the data are interpreted as spatial or spatial-temporal realisations on a set of non-equispaced spatial sites (irregular grid).
X: Numeric; Matrix of spatio(temporal) covariates in the linear mean specification.
setting: String; are data spatial, spatio-temporal or spatial bivariate (respectively spatial, spacetime, bivariate)
Returns
Returns a list containing the following components: - coordx: A d-dimensional vector of spatial coordinates;
coordy: A d-dimensional vector of spatial coordinates;
coordt: A t-dimensional vector of temporal coordinates;
data: The data without NAvalues
grid: TRUE if the spatial data are observed in a regular grid, otherwise FALSE;
perc: The percentage of NA values .
setting: Are data of spatial or spatio-temporal or spatial bivariate type
library(GeoModels)# Define the spatial-coordinates of the points:set.seed(79)x = runif(200,0,1)y = runif(200,0,1)coords=cbind(x,y)# Set the exponential cov parameters:corrmodel ="Matern"mean=0sill=1nugget=0scale=0.3/3smooth=0.5param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth)# Simulation of the spatial Gaussian random field:data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data
data[1:100]=NA# removing NAa=GeoNA(data,coordx=coords)a$perc # percentage of NA values #a$coordx# spatial coordinates without missing values#a$data # data without missinng values