The procedure computes and plots estimated covariance or semivariogram models of a Gaussian or a non Gaussian spatial (temporal or bivariate spatial) random field. It allows to add the empirical estimates in order to compare them with the fitted model.
UTF-8
fitted: A fitted object obtained from the GeoFit or GeoWLS procedures.
distance: String; the name of the spatial distance. The default is Eucl, the euclidean distance. See GeoFit.
answer.cov: Logical; if TRUE a vector with the estimated covariance function is returned; if FALSE (the default) the covariance is not returned.
answer.vario: Logical; if TRUE a vector with the estimated variogram is returned; if FALSE (the default) the variogram is not returned.
answer.range: Logical; if TRUE the estimated pratical range is returned; if FALSE (the default) the pratical range is not returned.
fix.lags: Integer; a positive value denoting the spatial lag to consider for the plot of the temporal profile.
fix.lagt: Integer; a positive value denoting the temporal lag to consider for the plot of the spatial profile.
show.cov: Logical; if TRUE the estimated covariance function is plotted; if FALSE (the default) the covariance function is not plotted.
show.vario: Logical; if TRUE the estimated variogram is plotted; if FALSE (the default) the variogram is not plotted.
show.range: Logical; if TRUE the estimated pratical range is added on the plot; if FALSE (the default) the pratical range is not added.
add.cov: Logical; if TRUE the vector of the estimated covariance function is added on the current plot; if FALSE (the default) the covariance is not added.
add.vario: Logical; if TRUE the vector with the estimated variogram is added on the current plot; if FALSE (the default) the correlation is not added.
pract.range: Numeric; the percent of the sill to be reached.
vario: A Variogram object obtained from the GeoVariogram procedure.
invisible: Logical;If TRUE then a statistic the (sum of the squared diffeence between the empirical semivariogram and the estimated semivariogram) is computed.
...: other optional parameters which are passed to plot functions.
Details
The function computes the fitted variogram model
Returns
Produces a plot. No values are returned.
References
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
library(GeoModels)library(scatterplot3d)###################################################################### Example 1. Plot of fitted covariance and fitted ### and empirical semivariogram from a Gaussian RF ### with Matern correlation. ##################################################################set.seed(21)# Set the coordinates of the points:x = runif(300,0,1)y = runif(300,0,1)coords=cbind(x,y)# Set the model's parameters:corrmodel ="Matern"model ="Gaussian"mean =0sill =1nugget =0scale =0.2/3smooth=0.5param=list(mean=mean,sill=sill, nugget=nugget, scale=scale, smooth=smooth)# Simulation of the Gaussian random field:data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
I=Infstart=list(mean=0,scale=scale,sill=sill)lower=list(mean=-I,scale=0,sill=0)upper=list(mean= I,scale=I,sill=I)fixed=list(nugget=nugget,smooth=smooth)# Maximum composite-likelihood fitting of the Gaussian random field:fit = GeoFit(data=data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start, lower=lower,upper=upper, optimizer="nlminb", fixed=fixed,neighb=3)# Empirical estimation of the variogram:vario = GeoVariogram(data=data,coordx=coords,maxdist=0.5)# Plot of covariance and variogram functions:GeoCovariogram(fit,show.vario=TRUE, vario=vario,pch=20)###################################################################### Example 2. Plot of fitted covariance and fitted ### and empirical semivariogram from a Bernoulli ### RF with Genwend correlation. ##################################################################set.seed(2111)model="Binomial";n=1# Set the coordinates of the points:x = runif(500,0,1)y = runif(500,0,1)coords=cbind(x,y)# Set the model's parameters:corrmodel ="GenWend"mean =0nugget =0scale =0.2smooth=0power=4param=list(mean=mean, nugget=nugget, scale=scale,smooth=0,power2=4)# Simulation of the Gaussian RF:data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param,n=n)$data
start=list(mean=0,scale=scale)fixed=list(nugget=nugget,power2=4,smooth=0)# Maximum composite-likelihood fitting of the Binomial random field:fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start,n=n, optimizer="BFGS", fixed=fixed,neighb=4)# Empirical estimation of the variogram:vario = GeoVariogram(data,coordx=coords,maxdist=0.5)# Plot of covariance and variogram functions:GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20,ylim=c(0,0.3))###################################################################### Example 3. Plot of fitted covariance and fitted ### and empirical semivariogram from a Weibull RF### with Wend0 correlation. ##################################################################set.seed(111)model="Weibull";shape=4# Set the coordinates of the points:x = runif(700,0,1)y = runif(700,0,1)coords=cbind(x,y)# Set the model's parameters:corrmodel ="Wend0"mean =0nugget =0scale =0.4power2=4param=list(mean=mean, nugget=nugget, scale=scale,shape=shape,power2=power2)# Simulation of the Gaussian RF:data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
start=list(mean=0,scale=scale,shape=shape)I=Inflower=list(mean=-I,scale=0,shape=0)upper=list(mean= I,scale=I,shape=I)fixed=list(nugget=nugget,power2=power2)fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start, lower=lower,upper=upper, optimizer="nlminb", fixed=fixed,neighb=3)# Empirical estimation of the variogram:vario = GeoVariogram(data,coordx=coords,maxdist=0.5)# Plot of covariance and variogram functions:GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20)###################################################################### Example 4. Plot of fitted and empirical semivariogram### from a space time Gaussian random fields ### with double Matern correlation. ##################################################################set.seed(92)# Define the spatial-coordinates of the points:x = runif(50,0,1)y = runif(50,0,1)coords=cbind(x,y)# Define the temporal sequence:time = seq(0,10,1)param=list(mean=mean,nugget=nugget, smooth_s=0.5,smooth_t=0.5,scale_s=0.5/3,scale_t=2/2,sill=sill)# Simulation of the spatio-temporal Gaussian random field:data = GeoSim(coordx=coords, coordt=time, corrmodel="Matern_Matern",param=param)$data
fixed=list(nugget=0, mean=0, smooth_s=0.5,smooth_t=0.5)start=list(scale_s=0.2, scale_t=0.5, sill=1)# Maximum composite-likelihood fitting of the space-time Gaussian random field:fit = GeoFit(data, coordx=coords, coordt=time, corrmodel="Matern_Matern", maxtime=1, neighb=3, likelihood="Marginal", type="Pairwise",fixed=fixed, start=start)# Empirical estimation of spatio-temporal covariance:vario = GeoVariogram(data,coordx=coords, coordt=time, maxtime=5,maxdist=0.5)# Plot of the fitted space-time variogramGeoCovariogram(fit,vario=vario,show.vario=TRUE)# Plot of covariance, variogram and spatio and temporal profiles:GeoCovariogram(fit,vario=vario,fix.lagt=1,fix.lags=1,show.vario=TRUE,pch=20)###################################################################### Example 5. Plot of fitted and empirical semivariogram### from a bivariate Gaussian random fields ### with Matern correlation. ##################################################################set.seed(92)# Define the spatial-coordinates of the points:x <- runif(600,0,2)y <- runif(600,0,2)coords <- cbind(x,y)# Simulation of a bivariate spatial Gaussian RF:# with a Bivariate Maternset.seed(12)param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, scale_1=0.12,scale_2=0.1,scale_12=0.15, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=-0.5)data <- GeoSim(coordx=coords,corrmodel="Bi_matern", param=param)$data
# selecting fixed and estimated parametersfixed=list(mean_1=4,mean_2=2,nugget_1=0,nugget_2=0, smooth_1=0.5,smooth_2=0.5,smooth_12=0.5)start=list(sill_1=var(data[1,]),sill_2=var(data[2,]), scale_1=0.1,scale_2=0.1,scale_12=0.1, pcol=cor(data[1,],data[2,]))# Maximum marginal pairwise likelihoodfitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern", likelihood="Marginal",type="Pairwise", optimizer="BFGS", start=start,fixed=fixed, neighb=4)print(fitcl)# Empirical estimation of spatio-temporal covariance:vario = GeoVariogram(data,coordx=coords,maxdist=0.4,bivariate=TRUE)GeoCovariogram(fitcl,vario=vario,show.vario=TRUE,pch=20)