GeoCorrFct_Cop function

Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields (copula models)

Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields (copula models)

The function computes the correlations of a spatial or spatio-temporal or a bivariate spatial Gaussian or non Gaussian copula randomm field with a given covariance model and a set of spatial (temporal) distances. UTF-8

GeoCorrFct_Cop(x,t=NULL,corrmodel, model="Gaussian",copula="Gaussian", distance="Eucl", param, radius=6371, n=1,covariance=FALSE,variogram=FALSE)

Arguments

  • x: A set of spatial distances.
  • t: A set of (optional) temporal distances.
  • corrmodel: String; the name of a correlation model, for the description see the Section Details .
  • model: String; the type of RF. See GeoFit.
  • copula: String; the type of copula. The two options are Gaussian and Clayton.
  • distance: String; the name of the spatial distance. The default is Eucl, the euclidean distance. See GeoFit.
  • param: A list of parameter values required for the covariance model.
  • radius: Numeric; a value indicating the radius of the sphere when using covariance models valid using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371)
  • n: Numeric; the number of trials in a (negative) binomial random fields. Default is 11.
  • covariance: Logic; if TRUE then the covariance is returned. Default is FALSE
  • variogram: Logic; if FALSE then the covariance/coorelation is returned. Otherwise the associated semivariogram is returned

Returns

Returns a vector of correlations or covariances values associated to a given parametric spatial and temporal correlation models.

Author(s)

Moreno Bevilacqua, moreno.bevilacqua89@gmail.com ,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl , https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl ,https://www.researchgate.net/profile/Christian-Caamano

Examples

library(GeoModels) ################################################################ ### ### Example 1. Correlation of a (mean reparametrized) beta random field with underlying ### Matern correlation model using Gaussian and Clayton copulas ### ############################################################### # Define the spatial distances x = seq(0,0.4,0.01) # Correlation Parameters for Matern model CorrParam("Matern") NuisParam("Beta2") # corr Gaussian copula param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5) corr1= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Gaussian",model="Beta2") plot(corr1,ylab="corr",main="Gauss copula correlation",lwd=2) # corr Clayton copula param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5,nu=2) corr2= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Clayton",model="Beta2") lines(x,corr2$corr,ylim=c(0,1),lty=2) plot(corr1,ylab="corr",main="Clayton copula correlation",lwd=2)
  • Maintainer: Moreno Bevilacqua
  • License: GPL (>= 3)
  • Last published: 2025-01-14