InteRD2 function

The InteRD2 estimate

The InteRD2 estimate

This function provides a robust deconvolution framework to integrate information from scRNA-seq references, marker genes, and prior biological knowledge.

InteRD2(bulk.data,list_marker,cell_type_unique,comb_sampled,ave_est,ave_sd, lambda_option,tol=0.0005)

Arguments

  • bulk.data: The ExpressionSet object for a target bulk data.
  • list_marker: A list of pre-specified marker genes corresponding to each cell type.
  • cell_type_unique: A list of cell types. It should match the order in list.marker.
  • comb_sampled: A pre-specified cell type proportions for the target bulk data, which could be obtained from reference-based deconvolution approach.
  • ave_est: A pre-specified population-level cell type proportions, which could be obtained from single-cell RNA-seq and external expression data from different studies, species, or data types
  • ave_sd: A pre-specified standard deviation for cell-type proportion estimation. The default is 1 for each cell type.
  • lambda_option: A sequence of values for the tuning parameter.
  • tol: A tolerance value for convergence. The default is 0.0005.

Returns

A list containing estimated cell type proportions corresponding to each tuning value, named est; and a sequence of goodness-of-fit values corresponding to each tuning value, named metrics. The smaller the better.

Examples

##read data library(InteRD) readRDSFromWeb<-function(ref) {readRDS(gzcon(url(ref)))} urlremote<-"https://github.com/chencxxy28/Data/raw/main/data_InteRD/" pseudo.seger<-readRDSFromWeb(paste0(urlremote,"pseudo.seger.rds")) InteRD1<-readRDSFromWeb(paste0(urlremote,"InteRD1.rds")) ave_est<-readRDSFromWeb(paste0(urlremote,"ave_est.rds")) ave_sd<-readRDSFromWeb(paste0(urlremote,"ave_sd.rds")) list_marker<-readRDSFromWeb(paste0(urlremote,"list_markerbaron20.rds")) lambda_option<-0 cell_type_unique<-c("alpha","beta","delta","gamma") lambda_option<-10e+05 InteRD2.output<-InteRD2(bulk.data=pseudo.seger,list_marker,cell_type_unique, comb_sampled=InteRD1,ave_est,ave_sd,lambda_option=lambda_option,tol=0.01) InteRD2<-InteRD.predict.prop(InteRD.output=InteRD2.output)
  • Maintainer: Chixiang Chen
  • License: Artistic-2.0
  • Last published: 2022-08-12