Calculate the Average Dose and the dose rate dispersion
Calculate the Average Dose and the dose rate dispersion
This functions calculates the Average Dose and its extrinsic dispersion, estimating the standard errors by bootstrapping based on the Average Dose Model by Guerin et al., 2017.
‘sigma_m’
The program requires the input of a known value of sigma_m, which corresponds to the intrinsic overdispersion, as determined by a dose recovery experiment. Then the dispersion in doses (sigma_d) will be that over and above sigma_m (and individual uncertainties sigma_wi).
data: RLum.Results or data.frame (required ): for data.frame : two columns with De(data[,1]) and De error(values[,2])
sigma_m: numeric (required ): the overdispersion resulting from a dose recovery experiment, i.e. when all grains have received the same dose. Indeed in such a case, any overdispersion (i.e. dispersion on top of analytical uncertainties) is, by definition, an unrecognised measurement uncertainty.
Nb_BE: integer (with default): sample size used for the bootstrapping
na.rm: logical (with default): exclude NA values from the data set prior to any further operation.
plot: logical (with default): enable/disable the plot output.
verbose: logical (with default): enable/disable output to the terminal.
...: further arguments that can be passed to graphics::hist . As three plots are returned all arguments need to be provided as list , e.g., main = list("Plot 1", "Plot 2", "Plot 3"). Note: not all arguments of hist are supported, but the output of hist is returned and can be used of own plots.
Further supported arguments: mtext (character ), rug (TRUE/FALSE).
Returns
The function returns numerical output and an (optional) plot.
[ NUMERICAL OUTPUT ]
‘RLum.Results’ -object
slot: @data
[.. $summary : data.frame]
Column
Type
Description
AVERAGE_DOSE
numeric
the obtained average dose
AVERAGE_DOSE.SE
numeric
the average dose error
SIGMA_D
numeric
sigma
SIGMA_D.SE
numeric
standard error of the sigma
IC_AVERAGE_DOSE.LEVEL
character
confidence level average dose
IC_AVERAGE_DOSE.LOWER
character
lower quantile of average dose
IC_AVERAGE_DOSE.UPPER
character
upper quantile of average dose
IC_SIGMA_D.LEVEL
integer
confidence level sigma
IC_SIGMA_D.LOWER
character
lower sigma quantile
IC_SIGMA_D.UPPER
character
upper sigma quantile
L_MAX
character
maximum likelihood value
[.. $dstar : matrix]
Matrix with bootstrap values
[.. $hist : list]
Object as produced by the function histogram
[ PLOT OUTPUT ]
The function returns two different plot panels.
(1) An abanico plot with the dose values
(2) A histogram panel comprising 3 histograms with the equivalent dose and the bootstrapped average dose and the sigma values.
Note
This function has beta status!
Function version
0.1.5
Examples
##Example 01 using package example data##load example datadata(ExampleData.DeValues, envir = environment())##calculate Average dose##(use only the first 56 values here)AD <- calc_AverageDose(ExampleData.DeValues$CA1[1:56,], sigma_m =0.1)##plot De and set Average dose as central valueplot_AbanicoPlot( data = ExampleData.DeValues$CA1[1:56,], z.0= AD$summary$AVERAGE_DOSE)
How to cite
Christophe, C., Philippe, A., Kreutzer, S., 2025. calc_AverageDose(): Calculate the Average Dose and the dose rate dispersion. Function version 0.1.5. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.1. https://r-lum.github.io/Luminescence/
References
Guerin, G., Christophe, C., Philippe, A., Murray, A.S., Thomsen, K.J., Tribolo, C., Urbanova, P., Jain, M., Guibert, P., Mercier, N., Kreutzer, S., Lahaye, C., 2017. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model. Quaternary Geochronology 1-32. doi:10.1016/j.quageo.2017.04.002
Further reading
Efron, B., Tibshirani, R., 1986. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1, 54-75.
See Also
read.table , graphics::hist
Author(s)
Claire Christophe, IRAMAT-CRP2A, Université de Nantes (France), Anne Philippe, Université de Nantes, (France), Guillaume Guérin, IRAMAT-CRP2A, Université Bordeaux Montaigne, (France), Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany) , RLum Developer Team