plot_NRt function

Visualise natural/regenerated signal ratios

Visualise natural/regenerated signal ratios

This function creates a Natural/Regenerated signal vs. time (NR(t)) plot as shown in Steffen et al. 2009.

This function accepts the individual curve data in many different formats. If data is a list, each element of the list must contain a two column data.frame or matrix containing the XY data of the curves (time and counts). Alternatively, the elements can be objects of class RLum.Data.Curve .

Input values can also be provided as a data.frame or matrix where the first column contains the time values and each following column contains the counts of each curve.

plot_NRt( data, log = FALSE, smooth = c("none", "spline", "rmean"), k = 3, legend = TRUE, legend.pos = "topright", ... )

Arguments

  • data: list , data.frame , matrix or RLum.Analysis (required ): X,Y data of measured values (time and counts). See details on individual data structure.

  • log: character (optional): logarithmic axes (c("x", "y", "xy")).

  • smooth: character (with default): apply data smoothing. If "none" (default), no data smoothing is applied. Use "rmean" to calculate the rolling mean, where k determines the width of the rolling window (see data.table::frollmean ). "spline"

    applies a smoothing spline to each curve (see stats::smooth.spline )

  • k: integer (with default): integer width of the rolling window.

  • legend: logical (with default): enable/disable the plot legend.

  • legend.pos: character (with default): keyword specifying the position of the legend (see legend ).

  • ...: further parameters passed to plot (also see par ).

Returns

Returns a plot and RLum.Analysis object.

Examples

## load example data data("ExampleData.BINfileData", envir = environment()) ## EXAMPLE 1 ## convert Risoe.BINfileData object to RLum.Analysis object data <- Risoe.BINfileData2RLum.Analysis(object = CWOSL.SAR.Data, pos = 8, ltype = "OSL") ## extract all OSL curves allCurves <- get_RLum(data) ## keep only the natural and regenerated signal curves pos <- seq(1, 9, 2) curves <- allCurves[pos] ## plot a standard NR(t) plot plot_NRt(curves) ## re-plot with rolling mean data smoothing plot_NRt(curves, smooth = "rmean", k = 10) ## re-plot with a logarithmic x-axis plot_NRt(curves, log = "x", smooth = "rmean", k = 5) ## re-plot with custom axes ranges plot_NRt(curves, smooth = "rmean", k = 5, xlim = c(0.1, 5), ylim = c(0.4, 1.6), legend.pos = "bottomleft") ## re-plot with smoothing spline on log scale plot_NRt(curves, smooth = "spline", log = "x", legend.pos = "top") ## EXAMPLE 2 # you may also use this function to check whether all # TD curves follow the same shape (making it a TnTx(t) plot). posTD <- seq(2, 14, 2) curves <- allCurves[posTD] plot_NRt(curves, main = "TnTx(t) Plot", smooth = "rmean", k = 20, ylab = "TD natural / TD regenerated", xlim = c(0, 20), legend = FALSE) ## EXAMPLE 3 # extract data from all positions data <- lapply(1:24, FUN = function(pos) { Risoe.BINfileData2RLum.Analysis(CWOSL.SAR.Data, pos = pos, ltype = "OSL") }) # get individual curve data from each aliquot aliquot <- lapply(data, get_RLum) # set graphical parameters par(mfrow = c(2, 2)) # create NR(t) plots for all aliquots for (i in 1:length(aliquot)) { plot_NRt(aliquot[[i]][pos], main = paste0("Aliquot #", i), smooth = "rmean", k = 20, xlim = c(0, 10), cex = 0.6, legend.pos = "bottomleft") } # reset graphical parameters par(mfrow = c(1, 1))

How to cite

Burow, C., 2025. plot_NRt(): Visualise natural/regenerated signal ratios. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.1. https://r-lum.github.io/Luminescence/

References

Steffen, D., Preusser, F., Schlunegger, F., 2009. OSL quartz underestimation due to unstable signal components. Quaternary Geochronology, 4, 353-362.

See Also

plot

Author(s)

Christoph Burow, University of Cologne (Germany) , RLum Developer Team

  • Maintainer: Sebastian Kreutzer
  • License: GPL-3
  • Last published: 2025-03-07