This function creates a Natural/Regenerated signal vs. time (NR(t)) plot as shown in Steffen et al. 2009.
This function accepts the individual curve data in many different formats. If data is a list, each element of the list must contain a two column data.frame or matrix containing the XY data of the curves (time and counts). Alternatively, the elements can be objects of class RLum.Data.Curve .
Input values can also be provided as a data.frame or matrix where the first column contains the time values and each following column contains the counts of each curve.
data: list , data.frame , matrix or RLum.Analysis (required ): X,Y data of measured values (time and counts). See details on individual data structure.
log: character (optional): logarithmic axes (c("x", "y", "xy")).
smooth: character (with default): apply data smoothing. If "none" (default), no data smoothing is applied. Use "rmean" to calculate the rolling mean, where k determines the width of the rolling window (see data.table::frollmean ). "spline"
applies a smoothing spline to each curve (see stats::smooth.spline )
k: integer (with default): integer width of the rolling window.
legend: logical (with default): enable/disable the plot legend.
legend.pos: character (with default): keyword specifying the position of the legend (see legend ).
...: further parameters passed to plot (also see par ).
Returns
Returns a plot and RLum.Analysis object.
Examples
## load example datadata("ExampleData.BINfileData", envir = environment())## EXAMPLE 1## convert Risoe.BINfileData object to RLum.Analysis objectdata <- Risoe.BINfileData2RLum.Analysis(object = CWOSL.SAR.Data, pos =8, ltype ="OSL")## extract all OSL curvesallCurves <- get_RLum(data)## keep only the natural and regenerated signal curvespos <- seq(1,9,2)curves <- allCurves[pos]## plot a standard NR(t) plotplot_NRt(curves)## re-plot with rolling mean data smoothingplot_NRt(curves, smooth ="rmean", k =10)## re-plot with a logarithmic x-axisplot_NRt(curves, log ="x", smooth ="rmean", k =5)## re-plot with custom axes rangesplot_NRt(curves, smooth ="rmean", k =5, xlim = c(0.1,5), ylim = c(0.4,1.6), legend.pos ="bottomleft")## re-plot with smoothing spline on log scaleplot_NRt(curves, smooth ="spline", log ="x", legend.pos ="top")## EXAMPLE 2# you may also use this function to check whether all# TD curves follow the same shape (making it a TnTx(t) plot).posTD <- seq(2,14,2)curves <- allCurves[posTD]plot_NRt(curves, main ="TnTx(t) Plot", smooth ="rmean", k =20, ylab ="TD natural / TD regenerated", xlim = c(0,20), legend =FALSE)## EXAMPLE 3# extract data from all positionsdata <- lapply(1:24, FUN =function(pos){ Risoe.BINfileData2RLum.Analysis(CWOSL.SAR.Data, pos = pos, ltype ="OSL")})# get individual curve data from each aliquotaliquot <- lapply(data, get_RLum)# set graphical parameterspar(mfrow = c(2,2))# create NR(t) plots for all aliquotsfor(i in1:length(aliquot)){ plot_NRt(aliquot[[i]][pos], main = paste0("Aliquot #", i), smooth ="rmean", k =20, xlim = c(0,10), cex =0.6, legend.pos ="bottomleft")}# reset graphical parameterspar(mfrow = c(1,1))
How to cite
Burow, C., 2025. plot_NRt(): Visualise natural/regenerated signal ratios. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.0.1. https://r-lum.github.io/Luminescence/
References
Steffen, D., Preusser, F., Schlunegger, F., 2009. OSL quartz underestimation due to unstable signal components. Quaternary Geochronology, 4, 353-362.
See Also
plot
Author(s)
Christoph Burow, University of Cologne (Germany) , RLum Developer Team