betaMod function

Beta model

Beta model

The beta model is defined as [REMOVE_ME]f(d,θ)=E0+EmaxB(δ1,δ2)(d/scal)δ1(1d/scal)δ2f(d,theta)=E0+EmaxB(delta1,delta2)(d/scal)delta1(1d/scal)delta2[REMOVEME2] f(d,\theta)=E_0+E_{max}B(\delta_1,\delta_2)(d/scal)^{\delta_1}(1-d/scal)^{\delta_2}f(d,theta)=E0+Emax B(delta1,delta2)(d/scal)^delta1(1-d/scal)^delta2 [REMOVE_ME_2]

where [REMOVE_ME]B(δ1,δ2)=(δ1+δ2)δ1+δ2/(δ1δ1δ2δ2)B(delta1,delta2)=(delta1+delta2)(delta1+delta2)/(delta1delta1delta2delta2).[REMOVEME2] B(\delta_1,\delta_2)=(\delta_1+\delta_2)^{\delta_1+\delta_2}/(\delta_1^{\delta_1} \delta_2^{\delta_2})B(delta1,delta2)=(delta1+delta2)^(delta1+delta2)/(delta1^delta1 delta2^delta2). [REMOVE_ME_2]

Description

The beta model is defined as

f(d,θ)=E0+EmaxB(δ1,δ2)(d/scal)δ1(1d/scal)δ2f(d,theta)=E0+EmaxB(delta1,delta2)(d/scal)delta1(1d/scal)delta2 f(d,\theta)=E_0+E_{max}B(\delta_1,\delta_2)(d/scal)^{\delta_1}(1-d/scal)^{\delta_2}f(d,theta)=E0+Emax B(delta1,delta2)(d/scal)^delta1(1-d/scal)^delta2

where

B(δ1,δ2)=(δ1+δ2)δ1+δ2/(δ1δ1δ2δ2)B(delta1,delta2)=(delta1+delta2)(delta1+delta2)/(delta1delta1delta2delta2). B(\delta_1,\delta_2)=(\delta_1+\delta_2)^{\delta_1+\delta_2}/(\delta_1^{\delta_1} \delta_2^{\delta_2})B(delta1,delta2)=(delta1+delta2)^(delta1+delta2)/(delta1^delta1 delta2^delta2).
betaMod(dose, e0, eMax, delta1, delta2, scal)

Arguments

  • dose: Dose variable
  • e0: Placebo effect
  • eMax: Maximum effect
  • delta1: delta1 parameter
  • delta2: delta2 parameter
  • scal: Scale parameter (not estimated in the code)

Details

The beta model is intended to capture non-monotone dose-response relationships and is more flexible than the quadratic model. The kernel of the beta model function consists of the kernel of the density function of a beta distribution on the interval [0,scal]. The parameter scal is not estimated but needs to be set to a value larger than the maximum dose via the argument scal.

Returns

Response value

See Also

logistic, sigEmax, linlog, linear, quadratic, emax, exponential

  • Maintainer: Bjoern Bornkamp
  • License: GPL-3
  • Last published: 2020-03-09

Useful links