Beta model
The beta model is defined as [REMOVE_ME]f(d,θ)=E0+EmaxB(δ1,δ2)(d/scal)δ1(1−d/scal)δ2f(d,theta)=E0+EmaxB(delta1,delta2)(d/scal)delta1(1−d/scal)delta2[REMOVEME2]
where [REMOVE_ME]B(δ1,δ2)=(δ1+δ2)δ1+δ2/(δ1δ1δ2δ2)B(delta1,delta2)=(delta1+delta2)(delta1+delta2)/(delta1delta1delta2delta2).[REMOVEME2]
Description
The beta model is defined as
f(d,θ)=E0+EmaxB(δ1,δ2)(d/scal)δ1(1−d/scal)δ2f(d,theta)=E0+EmaxB(delta1,delta2)(d/scal)delta1(1−d/scal)delta2
where
B(δ1,δ2)=(δ1+δ2)δ1+δ2/(δ1δ1δ2δ2)B(delta1,delta2)=(delta1+delta2)(delta1+delta2)/(delta1delta1delta2delta2).
betaMod(dose, e0, eMax, delta1, delta2, scal)
Arguments
dose
: Dose variable
e0
: Placebo effect
eMax
: Maximum effect
delta1
: delta1 parameter
delta2
: delta2 parameter
scal
: Scale parameter (not estimated in the code)
Details
The beta model is intended to capture non-monotone dose-response relationships and is more flexible than the quadratic model. The kernel of the beta model function consists of the kernel of the density function of a beta distribution on the interval [0,scal]. The parameter scal is not estimated but needs to be set to a value larger than the maximum dose via the argument scal
.
Returns
Response value
See Also
logistic
, sigEmax
, linlog
, linear
, quadratic
, emax
, exponential