Produces a trellis display of the model functions in the candidate set. The location and scale parameters of the models are determined by the base and maxEff
models: A list specifying the candidate models. This can also be a fullMod object, then the arguments base, maxEff, off and scal are ignored.
doses: Dose levels to be administered
base: Expected baseline effect
maxEff: Expected maximum change from baseline
nPoints: Number of points for plotting
off: Offset parameter for the linear in log model (default: 10 percent of maximum dose)
scal: Scale parameter for the beta model (default: 20 percent larger than maximum dose)
superpose: Logical determining, whether model plots should be superposed
ylab, xlab: Label for y-axis and x-axis.
...: Additional arguments to the xyplot call.
References
Bornkamp B., Pinheiro J. C., Bretz, F. (2009). MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies, Journal of Statistical Software, 29 (7), 1--23
Pinheiro, J. C., Bornkamp, B. and Bretz, F. (2006). Design and analysis of dose finding studies combining multiple comparisons and modeling procedures, Journal of Biopharmaceutical Statistics, 16 , 639--656
See Also
guesst, fullMod
Examples
# JBS exampledoses <- c(0,10,25,50,100,150)models <- list(linear =NULL, emax = c(25), logistic = c(50,10.88111), exponential = c(85), betaMod = matrix(c(0.33,2.31,1.39,1.39), byrow=TRUE, nrow=2))plotModels(models, doses, base =0, maxEff =0.4, scal =200)# all models in one panelplotModels(models, doses, base =0, maxEff =0.4, scal =200, superpose =TRUE)# plotModels can also be called using a fullMod objectfM <- fullMod(models, doses, base =0, maxEff =0.4, scal =200)plotModels(fM)# or even easierplot(fM)