calcGammaKernel function

Calculate Gamma Stochastic Matrix

Calculate Gamma Stochastic Matrix

Given a distance matrix from calcVinEll, calculate a stochastic matrix where one step movement probabilities follow a gamma density.

calcGammaKernel(distMat, shape, rate)

Arguments

  • distMat: Distance matrix from calcVinEll
  • shape: Shape parameter of GammaDist distribution
  • rate: Rate parameter of GammaDist distribution

Details

The distribution and density functions for the gamma kernel are given below:

F(x)=1Γ(α)γ(α,βx) F(x)=\frac{1}{\Gamma(\alpha)}\gamma(\alpha,\beta x) f(x)=βαΓ(α)xα1eβx f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}

where Γ(α)\Gamma(\alpha) is the Gamma function, γ(α,βx)\gamma(\alpha,\beta x) is the lower incomplete gamma function, and α,β\alpha,\beta are the shape and rate parameters, respectively.

Examples

# setup distance matrix # two-column matrix with latitude/longitude, in degrees latLong = cbind(runif(n = 5, min = 0, max = 90), runif(n = 5, min = 0, max = 180)) # Vincenty Ellipsoid distance formula distMat = calcVinEll(latLongs = latLong) # calculate gamma distribution over distances # shape and rate are just for example kernMat = calcGammaKernel(distMat = distMat, shape = 1, rate = 1)
  • Maintainer: Héctor Manuel Sánchez Castellanos
  • License: GPL-3
  • Last published: 2020-10-05