MaOEA0.6.2 package

Many Objective Evolutionary Algorithm

AdaptiveNormalization

Objective space normalization.

cmaes_gen

Generator for cmaes_gen class.

compute_R2HV

Modified powered tchebyscheff R2-indicator designed to approximate HV

compute_R2HVC

Modified tchebyscheff R2-indicator contribution designed to approximat...

compute_R2mtch

Modified tchebyscheff R2-indicator

createWeights

Das and Dennis's structured weight generation, normal boundary interse...

createWeightsSobol

Sobol sequence weights

DTLZ1

The DTLZ1 test function.

DTLZ2

The DTLZ2 test function.

DTLZ3

The DTLZ3 test function.

DTLZ4

The DTLZ4 test function.

EvaluateIndividual

Evaluate objective values of a single individual

EvaluatePopulation

Evaluate objective value of a set of individuals

GetHVContribution

Get HV contribution of all points.

GetHypervolume

Compute hypervolume

GetIGD

Get IGD value

GetLeastContribution

Get least HV contribution

GetLeastContributor

Get least HV contributor

InitializePopulationLHS

Initialize population with Latin Hypercube Sampling

install_python_dependencies

Install python modules required by MaOEA: numpy and PyGMO

load_python_dependencies

Install python modules required by MaOEA: numpy and PyGMO

MaOEA-package

Many-Objective Evolutionary Algorithm

MOCMAES

Multi-Objective CMA-ES

Normalize

Objective space normalization.

NSGA3

Elitist Non-dominated Sorting Genetic Algorithm version III

optimMaOEA

Elitist Non-dominated Sorting Genetic Algorithm version III

SMOCMAES

Steady-state Multi-Objective CMA-ES

SMSEMOA

S-Metric Selection EMOA

WFG1

The WFG1 test function.

WFG2

The WFG2 test function.

WFG4

The WFG4 test function.

WFG5

The WFG5 test function.

WFG6

The WFG6 test function.

WFG7

The WFG7 test function.

WFG8

The WFG8 test function.

WFG9

The WFG9 test function.

A set of evolutionary algorithms to solve many-objective optimization. Hybridization between the algorithms are also facilitated. Available algorithms are: 'SMS-EMOA' <doi:10.1016/j.ejor.2006.08.008> 'NSGA-III' <doi:10.1109/TEVC.2013.2281535> 'MO-CMA-ES' <doi:10.1145/1830483.1830573> The following many-objective benchmark problems are also provided: 'DTLZ1'-'DTLZ4' from Deb, et al. (2001) <doi:10.1007/1-84628-137-7_6> and 'WFG4'-'WFG9' from Huband, et al. (2005) <doi:10.1109/TEVC.2005.861417>.

  • Maintainer: Dani Irawan
  • License: GPL (>= 3)
  • Last published: 2020-08-31