cmaes_gen function

Generator for cmaes_gen class.

Generator for cmaes_gen class.

Create a list with cmaes_gen class. Basically, the function transform the population into a class that is accepted by the MOCMAES and SMOCMAES function.

cmaes_gen( population, ps_target = (1/(5 + (1/2)^0.5)), stepSize = 0.5, evoPath = rep(0, nrow(population)), covarianceMatrix = diag(nrow(population)) )

Arguments

  • population: The number of objective functions. A scalar value.
  • ps_target: The target success rate. Used to initialize cmaes_gen$averageSuccessRate.
  • stepSize: The initial step size.
  • evoPath: A vector of numbers indicating evolution path of each variable.
  • covarianceMatrix: Covariance matrix of the variables.

Returns

An object of cmaes_gen class. It can be used as MO-CMA-ES parent. It is a 5 tuple: x (the design point, length = number of variable),averageSuccessRate (scalar),stepSize (scalar), evoPath (evolution path, vector, length = number of variable ),covarianceMatrix (square matrix with ncol = nrow = number of variable).

Examples

nVar <- 14 nObjective <- 5 nIndividual <- 100 crossoverProbability <- 1 ps_target <- 1 / (5 + ( 1 / 2 )^0.5 ) pop <- matrix(stats::runif(nIndividual*nVar), nrow = nVar) # create the population a_list <- cmaes_gen(pop) control <- list(successProbTarget=ps_target,crossoverProbability=crossoverProbability) # run a generation of MO-CMA-ES with standard WFG8 test function. numpyready <- reticulate::py_module_available('numpy') pygmoready <- reticulate::py_module_available('pygmo') py_module_ready <- numpyready && pygmoready if(py_module_ready) # prevent error on testing the example newGeneration <- MOCMAES(a_list,nObjective,WFG8,control,nObjective)
  • Maintainer: Dani Irawan
  • License: GPL (>= 3)
  • Last published: 2020-08-31