Fits a binary lo gistic biplot to a binary data matrix.
BinaryLogisticBiplot(x, dim =2, compress =FALSE, init ="mca",method ="EM", rotation ="none", tol =1e-04,maxiter =100, penalization =0.2, similarity ="Simple_Matching",...)
Arguments
x: The binary data matrix
dim: Dimension of the solution
compress: Compress the data before the fitting (not yet implemented)
init: Type of initial configuration. ("random", "mirt", "PCoA", "mca")
method: Method to fit the logistic biplot ("EM", "Joint", "mirt", "JointGD", "AlternatedGD", "External", "Recursive")
rotation: Rotation of the solution ("none", "oblimin", "quartimin", "oblimax" ,"entropy", "quartimax", "varimax", "simplimax" ) see GPARotation
tol: Tolerance for the algorithm
maxiter: Maximum number of iterations.
penalization: Panalization for the different algorithms
similarity: Similarity coefficient for the initial configuration or the external model
...: Any other argument for each particular method.
Details
Fits a binary lo gistic biplot to a binary data matrix.
Different Initial configurations can be selected:
1.- random : Random coordinates for each point.
2.- mirt: scores of the procedure mirt (Multidimensional Item Response Theory)
3.- PCoA: Principal Coordinates Analysis
4.- mca: Multiple Correspondence Analysis
We can use also different methods for the estimation
1.- Joint: Joint estimation of the row and column parameters. The Initial alorithm.
2.- EM: Marginal Maximum Likelihood
3.- mirt: Similar to the previous but fitted using the package mirt.
4.- JointGD: Joint estimation of the row and column methods using the gradient descent method.
5.- AlternatedGD: Alternated estimation of the row and column methods using the gradient descent method.
6.- External: Logistic fits on the Principal Coordinates Analysis.
7.- Recursive: Recursive (one axis at a time) estimation of the row and column methods using the gradient descent method. This is similar to the NIPALS algorithm for PCA
Returns
A Logistic Biplot object.
References
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence Análisis And Related Methods. Grenacre, M & Blasius, J, Eds, Chapman and Hall, Boca Raton.
Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.