ContinuousProximities function

Proximities for Continuous Data

Proximities for Continuous Data

Calculates proximities among rows of a continuous data matrix or among the rows of two continuous matrices.

ContinuousProximities(x, y = NULL, ysup = FALSE, transpose = FALSE, coef = "Pythagorean", r = 1)

Arguments

  • x: Main data matrix. Distances among rows are calculated if y=NULL.
  • y: Supplementary data matrix. If not NULL the distances among the rows of x and y are calculated
  • ysup: Supplementary Y data
  • transpose: Transpose rows and columns
  • coef: Distance coefficient. Use the name or the number(see details)
  • r: Exponent for the Minkowsky

Details

The following coefficients are calculated

1.- Pythagorean = sqrt(sum((y[i, ] - x[j, ])^2)/p)

2.- Taxonomic = sqrt(sum(((y[i,]-x[j,])^2)/r^2)/p)

3.- City = sum(abs(y[i,]-x[j,])/r)/p

4.- Minkowski = (sum((abs(y[i,]-x[j,])/r)^t)/p)^(1/t)

5.- Divergence = sqrt(sum((y[i,]-x[j,])^2/(y[i,]+x[j,])^2)/p)

6.- dif_sum = sum(abs(y[i,]-x[j,])/abs(y[i,]+x[j,]))/p

7.- Camberra = sum(abs(y[i,]-x[j,])/(abs(y[i,])+abs(x[j,])))

8.- Bray_Curtis = sum(abs(y[i,]-x[j,]))/sum(y[i,]+x[j,])

9.- Soergel = sum(abs(y[i,]-x[j,]))/sum(apply(rbind(y[i,],x[j,]),2,max))

10.- Ware_hedges = sum(abs(y[i,]-x[j,]))/sum(apply(rbind(y[i,],x[j,]),2,max))

Returns

  • Data: A matrix with the initial data (x matrix).

  • SupData: A matrix with the supplementary data (y matrix).

  • D: The matrix of distances

  • Coefficient: The coefficient used.

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

Author(s)

Jose Luis Vicente-Villardon

Examples

data(wine) dis=ContinuousProximities(wine[,4:21])
  • Maintainer: Jose Luis Vicente Villardon
  • License: GPL (>= 2)
  • Last published: 2023-11-21

Useful links