Multidimensional Scaling using SMACOF algorithm and Bootstraping the coordinates.
MDS(Proximities, W =NULL, Model = c("Identity","Ratio","Interval","Ordinal"),dimsol =2, maxiter =100, maxerror =1e-06, Bootstrap =FALSE, nB =200,ProcrustesRot =TRUE, BootstrapMethod = c("Sampling","Permutation"),StandardizeDisparities =FALSE, ShowIter =FALSE)
Arguments
Proximities: An object of class proximities
W: A matrix of weigths
Model: MDS model. "Identity", "Ratio", "Interval" or "Ordinal".
dimsol: Dimension of the solution
maxiter: Maximum number of iterations of the algorithm
maxerror: Tolerance for convergence of the algorithm
Bootstrap: Should Bootstraping be performed?
nB: Number of Bootstrap samples.
ProcrustesRot: Should the bootstrap replicates be rotated to match the initial configuration using Procrustes?
BootstrapMethod: The bootstrap is performed by samplig or permutaing the residuals?
StandardizeDisparities: Should the disparities be standardized
ShowIter: Show the iteration proccess
Details
Multidimensional Scaling using SMACOF algorithm and Bootstraping the coordinates. MDS performs multidimensional scaling of proximity data to find a least- squares representation of the objects in a low-dimensional space. A majorization algorithm guarantees monotone convergence for optionally transformed, metric and nonmetric data under a variety of models.
Returns
An object of class Principal.Coordinates and MDS. The function adds the information of the MDS to the object of class proximities. Together with the information about the proximities the object has: - Analysis: The type of analysis performed, "MDS" in this case
Model: MDS model used
RowCoordinates: Coordinates for the objects in the MDS procedure
RawStress: Raw Stress values
stress1: stress formula 1
stress2: stress formula 2
sstress1: sstress formula 1
sstress2: sstress formula 2
rsq: Squared correlation between disparities and distances
Spearman: Spearman correlation between disparities and distances
Kendall: Kendall correlation between disparities and distances
BootstrapInfo: The result of the bootstrap calculations
References
Commandeur, J. J. F. and Heiser, W. J. (1993). Mathematical derivations in the proximity scaling (PROXSCAL) of symmetric data matrices (Tech. Rep. No. RR- 93-03). Leiden, The Netherlands: Department of Data Theory, Leiden University.
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 28-42.
De Leeuw, J. & Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/i03/
Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling (2nd ed.). Springer.
Borg, I., Groenen, P. J. F., & Mair, P. (2013). Applied Multidimensional Scaling. Springer.
Groenen, P. J. F., Heiser, W. J. and Meulman, J. J. (1999). Global optimization in least squares multidimensional scaling by distance smoothing. Journal of Classification, 16, 225-254.
Groenen, P. J. F., van Os, B. and Meulman, J. J. (2000). Optimal scaling by alternating length-constained nonnegative least squares, with application to distance-based analysis. Psychometrika, 65, 511-524.