MGC function

Mixture Gaussian Clustering

Mixture Gaussian Clustering

Model based clustering using mixtures of gaussian distriutions.

MGC(x, NG = 2, init = "km", RemoveOutliers=FALSE, ConfidOutliers=0.995, tolerance = 1e-07, maxiter = 100, show=TRUE, ...)

Arguments

  • x: The data matrix
  • NG: Number of groups or clusters to obtain
  • init: Initial centers can be obtained from k-means ("km") or at random ("rd")
  • RemoveOutliers: Should the extreme values be removed to calculate the clusters?
  • ConfidOutliers: Percentage of the points to keep for the calculations when RemoveOutliers is true.
  • tolerance: Tolerance for convergence
  • maxiter: Maximum number of iterations
  • show: Should the likelihood at each iteration be shown?
  • ...: Maximum number of iterationsAny other parameter that can affect k-means if that is the initial configuration

Details

A basic algorithm for clustering with mixtures of gaussians with no restrictions on the covariance matrices

Returns

Clusters

References

Me falta

Author(s)

Jose Luis Vicente Villardon

Examples

X=as.matrix(iris[,1:4]) mod1=MGC(X,NG=3) plot(iris[,1:4], col=mod1$Classification) table(iris[,5],mod1$Classification)
  • Maintainer: Jose Luis Vicente Villardon
  • License: GPL (>= 2)
  • Last published: 2023-11-21

Useful links