Mixture Gaussian Clustering
Model based clustering using mixtures of gaussian distriutions.
MGC(x, NG = 2, init = "km", RemoveOutliers=FALSE, ConfidOutliers=0.995, tolerance = 1e-07, maxiter = 100, show=TRUE, ...)
x
: The data matrixNG
: Number of groups or clusters to obtaininit
: Initial centers can be obtained from k-means ("km") or at random ("rd")RemoveOutliers
: Should the extreme values be removed to calculate the clusters?ConfidOutliers
: Percentage of the points to keep for the calculations when RemoveOutliers is true.tolerance
: Tolerance for convergencemaxiter
: Maximum number of iterationsshow
: Should the likelihood at each iteration be shown?...
: Maximum number of iterationsAny other parameter that can affect k-means if that is the initial configurationA basic algorithm for clustering with mixtures of gaussians with no restrictions on the covariance matrices
Clusters
Me falta
Jose Luis Vicente Villardon
X=as.matrix(iris[,1:4]) mod1=MGC(X,NG=3) plot(iris[,1:4], col=mod1$Classification) table(iris[,5],mod1$Classification)
Useful links